This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification feature of BAT has solved the problem of weakness in diversity observed in the algorithm by applying the parameters used in BAT. Moreover, balance is achieved through the intensification properties of the algorithms.
The aim of the research is to measure the relationship and effect of the application of total production maintenance TPM in the operational strategy, as it is considered one of the most important strategies for the process of restoring production losses because of inefficient equipment. Competitive edge in the global market by upgrading the operational strategies of OS in the application of TPM in those institutions that apply both H-OS-oriented and P-OS-oriented strategies where the strategy has been identified as a critical success factor. The aim of this study is to attempt to consider the application of comprehensive productive maintenance in industrial establishments
In this study, a 3 mm thickness 7075-T6 aluminium alloy sheet was used in the friction stir welding process. Using the design of experiment to reduce the number of experiments and to obtain the optimum friction stir welding parameters by utilizing Taguchi technique based on the ultimate tensile test results. Orthogonal array of L9 (33) was used based on three numbers of the parameters and three levels for each parameter, where shoulder-workpiece interference depth (0.20, 0.25, and 0.3) mm, pin geometry (cylindrical thread flat end, cylindrical thread with 3 flat round end, cylindrical thread round end), and thread pitch (0.8, 1, and 1.2) mm) this technique executed by Minitab 17 software. The results showed th
... Show MoreSummary The aim of this study is the evaluation the resistance of S. marcescence obtained from soil and water to metals chlorides (Zn+2, Hg+2, Fe+2, Al+3, and Pb+2). Four isolates, identified as Serratia marcescence and S. marcescena (S4) were selected for this study according to their resistance to five heavy metals. The ability of S. marcescena (S4) to grow in different concentrations of metals chloride (200-1200 µg/ml) was tested, the highest concentration that S. marcescence (S4) tolerate was 1000 µg/ml for Zn+2, Hg+2, Fe+2, AL+3, pb+2 and 300 µg/ml for Hg+2 through 24 hrs incubation at 37 Co. The effects of temperature and pH on bacteria growth during 72 hrs were also studied. S. marcescence (S4) was affected by ZnCl2, PbCl2, FeC12
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to find the best bacteria to remove kerosene from soil. The active bacteria are isolated for kerosene degradation process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradation which is 88.5%. The optimum conditions of kerosene degradation by Klebsiella pneumonia sp. are pH5, 48hr incubation period, 35°C temperature and 10000ppm the best kerosene concentration. The results 10000ppm showed that the maximum kerosene degradation can reach 99.58% after 48 h of incubation. Higher Kerosene degradation which was 99.83% was obtained at pH5. Kerosene degradation was found to be maximum at 3
... Show MoreIsolated Bacteria from the roots of barley were studied; two stages of processes Isolated and screening were applied in order to nd the best bacteria to remove kerosene from soil. The acve bacteria are isolated for kerosene degradaon process. It has been found that Klebsiella pneumoniae sp. have the highest kerosene degradaon which is 88.5%. The opmum condions of kerosene degradaon by Klebsiella pneumonia sp. are pH5, 48hr incubaon period, 35°C temperature and 10000ppm the best kerosene concentraon. The results 10000ppm showed that the maximum kerosene degradaon can reach 99.58% aer 48 h of incubaon. Higher Kerosene degradaon which was 99.83% was obtained at pH5. Kerosene degradaon was found
... Show MoreThis paper describes a new finishing process using magnetic abrasives were newly made to finish effectively brass plate that is very difficult to be polished by the conventional machining processes. Taguchi experimental design method was adopted for evaluating the effect of the process parameters on the improvement of the surface roughness and hardness by the magnetic abrasive polishing. The process parameters are: the applied current to the inductor, the working gap between the workpiece and the inductor, the rotational speed and the volume of powder. The analysis of variance(ANOVA) was analyzed using statistical software to identify the optimal conditions for better surface roughness and hardness. Regressions models based on statistical m
... Show MoreIn this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.
... Show More