This article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification feature of BAT has solved the problem of weakness in diversity observed in the algorithm by applying the parameters used in BAT. Moreover, balance is achieved through the intensification properties of the algorithms.
Several authors have used ranking function for solving linear programming problem. In This paper is proposed two ranking function for solving fuzzy linear programming and compare these two approach with trapezoidal fuzzy number .The proposed approach is very easy to understand and it can applicable, also the data were chosen from general company distribution of dairy (Canon company) was proposed test approach and compare; This paper prove that the second proposed approach is better to give the results and satisfy the minimal cost using Q.M. Software
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .