Preferred Language
Articles
/
WEJNxZkBMeyNPGM3Vri_
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm. In this research, a proposed model based on a Convolutional Neural Network (CNN) which is a machine learning tool that can be used for the automatic classification of images. The model is concerned with the classification of images, and for this, it employs the COREL Image dataset (Corel Gallery Image Dataset) as a reference. The images in the dataset used for training are harder than the classification of the images since they need more computational resources. In the experimental part, training the images using the CNN network achieved 98.52% accuracy, proving that the model has high accuracy in the classification of images.

Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Bitcoin Prediction with a hybrid model
...Show More Authors

In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction acc

... Show More
Scopus (10)
Scopus
Publication Date
Tue Apr 01 2025
Journal Name
Journal Of Economics And Administrative Sciences
Spatial Quantile Autoregressive Model: A Review
...Show More Authors

This paper is specifically a detailed review of the Spatial Quantile Autoregressive (SARQR) model that refers to the incorporation of quantile regression models into spatial autoregressive models to facilitate an improved analysis of the characteristics of spatially dependent data. The relevance of SARQR is emphasized in most applications, including but not limited to the fields that might need the study of spatial variation and dependencies. In particular, it looks at literature dated from 1971 and 2024 and shows the extent to which SARQR had already been applied previously in other disciplines such as economics, real estate, environmental science, and epidemiology. Accordingly, evidence indicates SARQR has numerous benefits compar

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Land Classification Wadi Al-Salam Basin
...Show More Authors

Dry environment study forms an important part in the field of applies geomorphology for
the wide rang of its lands which form most of the world, homeland, and Iraqi lands specially,
and what these lands include of scientific cases which needs to be searched and investigated.
They include rocks, land shapes, water supplements, its ancient soil and its active diggings are
all signs of the environment changes and effects that these lands under take over time, with
continuous remains of its features of characteristics under geo morphological dry
circumstances which works to slow change average, when the geomorphologic fearers varies
in this environment and what it contain of important economical resource. As to participl

... Show More
View Publication Preview PDF
Publication Date
Fri Jun 29 2018
Journal Name
Journal Of The College Of Education For Women
Audio Classification Based on Content Features
...Show More Authors

Audio classification is the process to classify different audio types according to contents. It is implemented in a large variety of real world problems, all classification applications allowed the target subjects to be viewed as a specific type of audio and hence, there is a variety in the audio types and every type has to be treatedcarefully according to its significant properties.Feature extraction is an important process for audio classification. This workintroduces several sets of features according to the type, two types of audio (datasets) were studied. Two different features sets are proposed: (i) firstorder gradient feature vector, and (ii) Local roughness feature vector, the experimentsshowed that the results are competitive to

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Organizational Culture Impact in Enhancing Job Performance A Case Study in the Modern Paint Industries Company
...Show More Authors

          The organizational culture is considered as an important topic. In this research, this topic was studied in modern paints Industries Company to assess its role in job performance and to show if there is this relationship between them or no. it is, also, attempted to measure this strength of this relationship if any. The 40 cases research sample was chosen. This sample included the chief executive, his assistants, key managers, and their assistants. The questioner consists of two sets of questions : the first set ( concerning the organizational culture) covers six variables (Physical structures , Symbols

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
مجلة ميسان للدراسات الأكاديمية
Enhancing Photostability Of Maxillofacial Silicone By The Addition Of Ultraviolet Absorbing Bisoctrizole:, A Review Of Literature
...Show More Authors

View Publication
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A Suggested Model For Using Customer's Data Management Information System/ A Case Study In Al-Rasheed Bank/General Agent Office/ Nothren Reigon
...Show More Authors

This study aim to  identify the concept of  web based information systems since its one of the important topics that is  usually omitted by our organizations, in addition to,  designing a web based information system in order to manage the customers data of Al- Rasheed bank, as a unified information system that is specialized to the banking deals of the customers with the bank, and providing a suggested model to apply the virtual private network as a tool that is to protect the transmitted data through the web based information system.

This study is considered important because it deals with one of the vital topics nowadays, namely: how to make it possible to use a distributed informat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 02 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Value at risk simulation in a fixed return stock portfolio using the Monte Carlo simulation model The concept of a bond portfolio
...Show More Authors

This research aims to predict the value of the maximum daily loss that the fixed-return securities portfolio may suffer in Qatar National Bank - Syria, and for this purpose data were collected for risk factors that affect the value of the portfolio represented by the time structure of interest rates in the United States of America over the extended period Between 2017 and 2018, in addition to data related to the composition of the bonds portfolio of Qatar National Bank of Syria in 2017, And then employing Monte Carlo simulation models to predict the maximum loss that may be exposed to this portfolio in the future. The results of the Monte Carlo simulation showed the possibility of decreasing the value at risk in the future due to the dec

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (33)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Chemical Industry And Chemical Engineering Quarterly
Optimization of dye adsorption process for Albizia lebbeck pods as a biomass using central composite rotatable design model
...Show More Authors

Albizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi

... Show More
View Publication
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref