Preferred Language
Articles
/
WEJNxZkBMeyNPGM3Vri_
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm. In this research, a proposed model based on a Convolutional Neural Network (CNN) which is a machine learning tool that can be used for the automatic classification of images. The model is concerned with the classification of images, and for this, it employs the COREL Image dataset (Corel Gallery Image Dataset) as a reference. The images in the dataset used for training are harder than the classification of the images since they need more computational resources. In the experimental part, training the images using the CNN network achieved 98.52% accuracy, proving that the model has high accuracy in the classification of images.

Crossref
View Publication
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression using Hierarchal Linear Polynomial Coding
...Show More Authors

Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Visible image watermarking using biorthogonal wavelet transform
...Show More Authors

In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 05 2019
Journal Name
Journal Of Engineering And Applied Sciences
Secure Image Steganography using Biorthogonal Wavelet Transform
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Iraqi Journal Of Physics
Blood Vessels Detection of Diabetic Retinopathy from Retinal Fundus Image using Image Processing Techniques
...Show More Authors

 

Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Enhancing the Performance of Piezoelectric Energy Harvesters Using Permanent Magnets
...Show More Authors

A cantilevered piezoelectric beam with a tip mass at its free end is a common energy harvester configuration. This paper introduces a new principle of designing such a harvester which increases the generated voltage without changing the natural frequency of the harvester: The attraction force between two permanent magnets is used to add stiffness to the system. This magnetic stiffening counters the effect of the tip mass on the natural frequency. Three setups incorporating piezoelectric bimorph cantilevers of the same type in different mechanical configurations are compared theoretically and experimentally to investigate the feasibility of this principle. Theoretical and experimental results show that magnetically stiffe

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 09 2025
Journal Name
Resources
Enhancing Reservoir Modeling via the Black Oil Model for Horizontal Wells: South Rumaila Oilfield, Iraq
...Show More Authors

Horizontal wells have revolutionized hydrocarbon production by enhancing recovery efficiency and reducing environmental impact. This paper presents an enhanced Black Oil Model simulator, written in Visual Basic, for three-dimensional two-phase (oil and water) flow through porous media. Unlike most existing tools, this simulator is customized for horizontal well modeling and calibrated using extensive historical data from the South Rumaila Oilfield, Iraq. The simulator first achieves a strong match with historical pressure data (1954–2004) using vertical wells, with an average deviation of less than 5% from observed pressures, and is then applied to forecast the performance of hypothetical horizontal wells (2008–2011). The result

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Eastern-european Journal Of Enterprise Technologies
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of Nonlinear PID Neural Controller for the Speed Control of a Permanent Magnet DC Motor Model based on Optimization Algorithm
...Show More Authors

In this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe

... Show More
View Publication Preview PDF