This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as absorption, reflectivity, the real and imaginary components of the dielectric function, Loss function, reflective index, extinction coefficient were calculated. Thus, the current findings reveal that Pd–BaTiO3 is a promising composition to be synthesised experimentally for various optoelectronic applications. The predicted negative formation energies values of the inspected structures are indicating to exothermic formation process of such materials and more interestingly indicating also to the stability and possibility of synthesizing such materials experimentally.
The spectral propetties (absorption and fluorescence) of Coumarine-47 laser dye have been studied. This type of laser dye belong the Coumarine family and it has dissolved in chloroform at different concentrations (1x10-5, 5x10-5, and 1x10-4 M) at room temperature. The achieved results have been pointed out to increase in the absorption and fluorescence as the concentration increased which are agreements with Beer – Lambert law. These have been also showed an expansion in the spectral range of absorption and fluorescence with a noticed shift in the direction of longer wavelength (Red-shift) with increasing concentration. The quantum efficiency of the dissolved C47 in chloroform has been computed by using the brevious concentrations
... Show MoreIn this research, hand lay- up technique is used to prepare samples from epoxy resin reinforced with multi- walled carbon nanotubes in different weight fractions (0, 2, 3, 4, 5) wt%. The immersion effect by sodium hydroxide solution (NaOH) at normality (0.3N) for a period of (15 days) on the thermal conductivity of nanocomposites was studied, and compared to natural condition (before immersion). The thermal conductivity of epoxy nanocomposites specimens were carried out using Lee’s disk method. The experimental results showed that thermal conductivity increased with increase weight fraction before and after immersion for all specimens, while the immersion effect leads to decrease thermal conductive values compared to thermal conductivi
... Show MoreZSM-5 zeolite was synthesis under hydrothermal conditions at 175oC. The synthesis parameters have been investigated to find optimum synthesis method. Firstly, the crystallization time has been investigated to find the optimum crystallization time. Also, the ageing time was studied. The morphology, structure, and composition of the synthesized ZSM-5 zeolite were characterized using scanning electron microscopy (SEM), pH meter, viscometer, and X-ray powder diffraction (XRD). The bulk Si/Al ratio of ZSM-5 zeolite was in the range of 9.5—11.7. The synthesized ZSM-5 zeolite with appropriate ageing time could adjust crystal size and degree of the crystallinity. The crystal size of ZSM-5 zeolite obtained at an agei
... Show MoreThis study was conducted to determine the effects of concentration of hydrochloric acids, temperature, and time on the hydrolysis of soya proteins (defatted soya flour) by determining the value of total protein nitrogen concentration, and amino nitrogen concentration of protein, peptides, and amino acids, and then calculated the hydrolysis rate of proteins.
The variables of the conditions of hydrolysis process was achieved in this study with the following range value of tests parameter:
- Concentration of HCl solution ranged between 1-7 N,
- Hydrolysis temperature ranged between 35-95 °C, and
- The time of hydroly
This work has been done with using of epoxy resin mixed with Granite powder were weighted by percent volume (5,10,15, and 20)%and then mixed with epoxy polymer to compose polymer composite. Hand lay-up technique is used in fabrication of the composite samples. Hardness test was carried out for the proper samples in both normal condition and after immersion in HCL (1 M and 2 M) solutions for periods ranging up to 10 weeks. After comparing the results between the polymer and their composite, the hardness increased with increasing Granite weight percent, it was found that Hardness were greater for the composites before immersion compared with their values after immersion.
In this research a study of some electrical properties Of (Te) thin films with(S) impurities of(1.2%) were deposited at( Ө=700)by thermal evaporation technique .The thicknesses of deposited films were (1050 , 1225 , 1400 , 1575 nm) on a glass substrates of different dimensions . From X-ray diffraction spectrum, the films are polycrystalline .A study of (I-V) characteristic for thin films, the measurements of electrical conductivity (σ)and electrical resistance(R )vs. temperature( T) are done. Further a measurement of thermoelectric power, see beck coefficient and activation energies ( Ea, Es) were computed
Z-scan has been utilized for studying the non-linear properties and optical limiting behaviors of the dye Copper Phthalocyanine thin films. The refractive index is negative, which indicates a self-defocusing behavior and non-linear absorption coefficient (
Electronic properties including (bond length, energy gap, HOMO, LUMO and density of state) as well as spectroscopic properties such like infrared, Raman scattering, force constant, reduced mass and longitu- dinal optical mode as a function of frequency are based on size and concentration of the molecular and nanostructures of aluminum nitride ALN, boron nitride BN and AlxB7-XN7 as nanotubes has calculated using Ab –initio approximation method dependent on density functional theory and generalized gradient approximation. The geometrical structure are calculated by using Gauss view 05 as a complementary program. Shows the energy gap of ALN, BN and AlxB7-XN7 as a function of the total number of atoms , start from smallest molecule to reached
... Show More