This contribution investigates structural, electronic, and optical properties of cubic barium titanate (BaTiO3) perovskites using first-principles calculations of density functional theory (DFT). Generalized gradient approximations (GGA) alongside with PW91 functional have been implemented for the exchange–correlation potential. The obtained results display that BaTiO3 exhibits a band gap of 3.21 eV which agrees well with the previously experimental and theoretical literature. Interestingly, our results explore that when replacing Pd atom with Ba and Ti atoms at 0.125 content a clear decrease in the electronic band gap of 1.052 and 1.090 eV located within the visible range of electromagnetic wavelengths (EMW). Optical parameters such as absorption, reflectivity, the real and imaginary components of the dielectric function, Loss function, reflective index, extinction coefficient were calculated. Thus, the current findings reveal that Pd–BaTiO3 is a promising composition to be synthesised experimentally for various optoelectronic applications. The predicted negative formation energies values of the inspected structures are indicating to exothermic formation process of such materials and more interestingly indicating also to the stability and possibility of synthesizing such materials experimentally.
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
Ti6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.
A laboratory experiment was carried out and repeated at field of College of Agricultural Engineering Sciences, University of Baghdad in 2017. First factor was three cultivars of lupine 'Giza-1', 'Giza-2' and 'Hamburg'. Second factor was three seed weights (lower weight, medium weight and higher weight) which was following the cultivars factor. Nested design was used. Results showed supremacy of 'Giza-1' cultivar significantly and gave higher germination ratio, radical length, seedling dry weight, seedling vigour index, field emergence ratio, plant height and number of leaves per plant. The treatment ('Giza-1'×higher seed weight) was supremacy significantly and gave higher germination ratio, radical length, plumule length, and seedling vigo
... Show MoreThe harvest of hydrocarbon from the depleted reservoir is crucial during field development. Therefore, drilling operations in the depleted reservoir faced several problems like partial and total lost circulation. Continuing production without an active water drive or water injection to support reservoir pressure will decrease the pore and fracture pressure. Moreover, this depletion will affect the distribution of stress and change the mud weight window. This study focused on vertical stress, maximum and minimum horizontal stress redistributions in the depleted reservoirs due to decreases in pore pressure and, consequently, the effect on the mud weight window. 1D and 4D robust geomechanical models are
This paper investigate a sensorless speed control of a separately excited dc motor fed from a buck type dc-dc converter. The control system is designed in digital technique by using a two dimension look-up table. The performance of the drive system was evaluated by digital simulation using Simulink toolbox of Matlab.