This study delves into the properties of the associated act V over the monoid S of sinshT. It examines the relationship between faithful, finitely generated, and separated acts, as well as their connections to one-to-one and onto operators. Additionally, the correlation between acts over a monoid and modules over a ring is explored. Specifically, it is established that functions as an act over S if and only if functions as module, where T represents a nilpotent operator. Furthermore, it is proved that when T is onto operator and is finitely generated, is guaranteed to be finite-dimensional. Prove that for any bounded operator the following, is acting over S if and only if is a module where T is a nilpotent operator, is a faithful act over S, where T is any bounded linear operator, if T is any bounded operator, then is separated, if is separated act over S, Then T is injective, if a basis K = {vj, j} for V, then every element w of can be composed as =(pn (T) + . v, for some v in V, and put T as similar to any operator from to and V as a finite dimensional normed space, then is Noetherian act over S if S is Noetherian.
In this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreIn this paper, we study the growth of solutions of the second order linear complex differential equations insuring that any nontrivial solutions are of infinite order. It is assumed that the coefficients satisfy the extremal condition for Yang’s inequality and the extremal condition for Denjoy’s conjecture. The other condition is that one of the coefficients itself is a solution of the differential equation .
The parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreIn this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov
... Show MoreThis paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show MoreVarious visual media are becoming an increasingly important and active instrument of communication. This fact has led some political parties and leading personalities in Iraq to make use of them as an accepted forum for the discussion of public affairs usually in a manner that conforms to their declared policy. They have to draw as much popular support as they could for the causes which they fight for. As a result, a state of great confusion has been created from the contradictory statements made by the contending parties and gave left grave consequences on all types of the audience receiving them. The problem of the study can be summarized in one major question: What is the opinions of the audience as regards the statements made by the
... Show MoreBackground: Although expression of the HER-
2/neuoncogene may be of some prognostic importance
in advanced ovarian cancer, its role in early-stage
disease has not been established. The current study
examined the prevalence and significance of HER-
2/neu expression in different grades of different types
of surface epithelial ovarian carcinoma.
Methods: Thirty eight female patients with surface
epithelial ovarian cancer were included in this study.
The blocks of corresponding formalin fixed, paraffinembedded
ovarian biopsies were retrieved from the
archives and hematoxylin-eosin slides of each ovarian
biopsy were reviewed and marked their grades of
differentiation , then a new sections from each sampl
Media studies have focused mostly on the issue of the mental image because the image that is formed in the mind has become not only a photo of a human being and having kept for himself. This image has an outside influence which may sometimes up to the formation of the fate of others and it sometimes includes individuals and groups together.
This study comes in the context of identifying the image of Iraqi political parties among Iraqi university students and the nature of the view that students have in their minds about these parties.
Chapter one includes the problem of the research, the importance of the study, the goals and method used. Chapter two is divided into two sections: section one deals with the concept of the mental i
The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3  n  11. A (k,n)-arcs is a set of k points no n + 1 of which are collinear. A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc