This paper investigated the fatigue life behavior of two composite materials subjected to different times of shot peening (2, 4 and 6 min).The first material prepared from unsaturated polyester with E-glass reinforcement by 33% volume fraction. While, the second one was prepared from unsaturated polyester with aluminum powder by2.5% volume fraction. The experimental results showed that the improvement in endurance limit was obtained (for the first material) at 2, 4 and 6 min shot peening times where the percentage of maximum improvement was 25% at shot peening time of 6 min. While, the endurance limit of the second material decreased at shot peening times of 2, 4 and 6 min where the percentage of maximum reduction was 29 % at shot peenin
... Show MoreThe pure ZnS and ZnS-Gr nanocomposite have been prepared
successfully by a novel method using chemical co-precipitation. Also
conductive polymer PPy nanotubes and ZnS-PPy nanocomposite
have been synthesized successfully by chemical route. The effect of
graphene on the characterization of ZnS has been investigated. X-ray
diffraction (XRD) study confirmed the formation of cubic and
hexagonal structure of ZnS-Gr. Dc-conductivity proves that ZnS and
ZnS-Gr have semiconductor behavior. The SEM proved that
formation of PPy nanotubes and the Gr nanosheet. The sensing
properties of ZnS-PPy/ZnS-Gr for NO2 gas was investigated as a
function of operating temperature and time under optimal condition.
The sensitivity,
This work is a trial to ensure the absolute security in any quantum cryptography (QC) protocol via building an effective hardware for satisfying the single-photon must requirement by controlling the value of mean photon number. This was approximately achieved by building a driving circuit that provide very short pulses (≈ 10 ns) for laser diode -LD- with output power of (0.7-0.99mW) using the available electronic components in local markets. These short pulses enable getting faint laser pulses that were further attenuated to reach mean photon number equal to 0.08 or less.
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
The present work involved preparation of new substituted and unsubstituted and poly imides (1-17) using reaction of acryloyl chloride with different amides (aliphatic ,aromatic) in the presence of a suitable solvent and amount tri ethyl amine (Et3N) with heating – the structure confirmation of all polymers were proved using FT-IR,1H-NMR,C13NMR and UV spectroscopy ,thermal analysis (TG) for some polymers confirmed their thermal stabilities . Other physical properties including softening and melting points, PH and solubility of the polymers were also measured
In this work, the performance of the receiver in a quantum cryptography system based on BB84 protocol is scaled by calculating the Quantum Bit Error Rate (QBER) of the receiver. To apply this performance test, an optical setup was arranged and a circuit was designed and implemented to calculate the QBER. This electronic circuit is used to calculate the number of counts per second generated by the avalanche photodiodes set in the receiver. The calculated counts per second are used to calculate the QBER for the receiver that gives an indication for the performance of the receiver. Minimum QBER, 6%, was obtained with avalanche photodiode excess voltage equals to 2V and laser diode power of 3.16 nW at avalanche photodiode temperature of -10
... Show More