In this study, doped thin cadmium peroxide films were prepared by pulsed laser deposition with different doping concentrations of aluminium of 0.0, 0.1, 0.3, and 0.5 wt.% for CdO2(1-X)Al(X) and thicknesses in the range of 200 nm. XRD patterns suggest the presence of cubic CdO2 and the texture factor confirms that the (111) plane was the preferential growth plane, where the texture factor and the grain size decreased from 2.02 to 9.75 nm, respectively, in the pure sample to 1.88 and 5.65 nm, respectively, at a concentration of 0.5 wt%. For the predominant growth plane, the deviation of the diffraction angle Δθ and interplanar distance Δd from the standard magnitudes was 2.774° and 0.318 Å, respectively, for the pure sample decreased to − 2.633° and 0.301 Å for the largest doping concentration. The optical absorption was found to decrease with increasing doping concentration, where the changes in threshold wavelengths from the standard λ = 496 nm were blue shifted by Δλ = 142, 133, 128, and 152 nm, respectively, for the concentrations used. The occurrence of such blue shifts points to a widening of the band gap to Eg = 3.5, 3.4, 3.35, and 3.6 eV for concentrations of 0.0, 0.1, 0.3, and 0.5 wt%, respectively.
Sb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
In this work, the influence of the annealing temperature on the optical properties of the thin films Cadmium Sulphide (CdS) has been studied. Thin films of Cadmium Sulphide (CdS) were made using the Physical Vapor Deposition (PVD) method. The optical properties of annealing temperatures (as deposited, 200, 250, and 300 ) were scrupulous. The UV/VIS spectrophotometer investigated optical parameters such as transmission, the coefficient of absorption and energy gap of the films for the range (400-110 nm) as an assignment of the annealing temperature. The optical properties were calculated as a function of annealed temperature: absorption, transmission, reflection, band gap, coefficient of absorp
... Show MoreAt a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreAbstract
In this work, the plasma parameters (electron temperature (Te), electron density( ne), plasma frequency (fp) and Debye length (λD)) have been studied by using the spectrometer that collect the spectrum of Laser produce CdTe(X):S(1-X) plasma at X=0.5 with different energies. The results of electron temperature for CdTe range 0.758-0.768 eV also the electron density 3.648 1018 – 4.560 1018 cm-3 have been measured under vacuum reaching 2.5 10-2 mbar .Optical properties of CdTe:S were determined through the optical transmission method using ultraviolet visible spectrophotometer within the r
... Show MoreThis paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
Thin films of ZnSxSe1-x with different sulfide content(x)
(0, 0.02, 0.04, 0.06, 0.8, and 0.1), thickness (t) (0.3, 0.5, and 0.7 μm) and annealing temperature (Ta) (R.T 373 and 423K) were fabricated by thermal evaporating under vacuum of 10-5 Toor on glass substrate. The results show that the increasing of sulfide content (x)and annealing temperature lead to decrease the d.c conductivity σDC of and concentration of charge carriers (nH) but increases the activation energy (Ea1,Ea2), while the increasing of t increases σDC and nH but decrease (Ea1,Ea2). The results were explained in different terms