Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system. A new features selection method is proposed based on DNA encoding and on DNA keys positions. The current system has three phases, the first phase, is called pre-processing phase, which is used to extract the keys and their positions, the second phase is training phase; the main goal of this phase is to select features based on the key positions that gained from pre-processing phase, and the third phase is the testing phase, which classified the network traffic records as either normal or attack by using specific features. The performance is calculated based on the detection rate, false alarm rate, accuracy, and also on the time that include both encoding time and matching time. All these results are based on using two or three keys, and it is evaluated by using two datasets, namely, KDD Cup 99, and NSL-KDD. The achieved detection rate, false alarm rate, accuracy, encoding time, and matching time for all corrected KDD Cup records (311,029 records) by using two and three keys are equal to 96.97, 33.67, 91%, 325, 13 s, and 92.74, 7.41, 92.71%, 325 and 20 s, respectively. The results for detection rate, false alarm rate, accuracy, encoding time, and matching time for all NSL-KDD records (22,544 records) by using two and three keys are equal to 89.34, 28.94, 81.46%, 20, 1 s and 82.93, 11.40, 85.37%, 20 and 1 s, respectively. The proposed system is evaluated and compared with previous systems and these comparisons are done based on encoding time and matching time. The outcomes showed that the detection results of the present system are faster than the previous ones.
Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreFlexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show MoreAbstract Bilastine, a second-generation antihistamine, is commonly prescribed for managing allergic rhinoconjunctivitis and urticaria due to its prolonged action. However, its therapeutic potential is constrained by poor water solubility and low oral bioavailability. This study aimed to enhance bilastine dissolution and patient compliance by formulating a nanosuspension-based orodispersible film (ODF). An anti-solvent precipitation method was employed to produce nanosuspension using different hydrophilic stabilizers (Soluplus®, Poloxamer 188, and PEG 6000). The influence of formulation parameters, such as the stabilizer ratio, the anti-solvent ratio, stirring speed, and the stabilizer type, on particle size and polydispersity index (PDI)
... Show MoreIn the present study, semi – batch experiments were conducted to investigate the efficiency of ozone microbubbles (OMBs) in the treatment of aqueous dye solutions methylene orange under different reaction conditions such as effect of initial solution pH , ozone generation rate and initial MO-concentration. The results showed that the removal of MO by OMBs were very high at the acidic and alkaline media and upon increasing the generation rate of ozone from 0.498 to 0.83 mg/s, the removal efficiency dramatically increased from 75to 100% within 15 min. The rate of oxidation reaction followed a pseudo first- order kinetic model. The results demonstrated that OMBs is efficient in terms of the decline of methylene orange c
... Show MoreFetal growth restriction is a significant contributor to fetal morbidity and mortality. In addition, there are heightened maternal risks associated with surgical operations and their accompanying dangers. Monitoring fetal development is a crucial objective of prenatal care and effective methods for early diagnosis of Fetal growth restriction, allowing prompt management and timely intervention to improve the outcomes. Screening for Fetal growth restriction can be achieved via many modalities; it can be medical, biochemical, or radiological. Some recommended combining more than one for better outcomes. Currently, there is inconsistency about the best method of Fetal growth restriction screening. In this review, a comprehensive
... Show More<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121
... Show More