Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system. A new features selection method is proposed based on DNA encoding and on DNA keys positions. The current system has three phases, the first phase, is called pre-processing phase, which is used to extract the keys and their positions, the second phase is training phase; the main goal of this phase is to select features based on the key positions that gained from pre-processing phase, and the third phase is the testing phase, which classified the network traffic records as either normal or attack by using specific features. The performance is calculated based on the detection rate, false alarm rate, accuracy, and also on the time that include both encoding time and matching time. All these results are based on using two or three keys, and it is evaluated by using two datasets, namely, KDD Cup 99, and NSL-KDD. The achieved detection rate, false alarm rate, accuracy, encoding time, and matching time for all corrected KDD Cup records (311,029 records) by using two and three keys are equal to 96.97, 33.67, 91%, 325, 13 s, and 92.74, 7.41, 92.71%, 325 and 20 s, respectively. The results for detection rate, false alarm rate, accuracy, encoding time, and matching time for all NSL-KDD records (22,544 records) by using two and three keys are equal to 89.34, 28.94, 81.46%, 20, 1 s and 82.93, 11.40, 85.37%, 20 and 1 s, respectively. The proposed system is evaluated and compared with previous systems and these comparisons are done based on encoding time and matching time. The outcomes showed that the detection results of the present system are faster than the previous ones.
Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne
... Show MoreIn this paper, some relations between the flows and the Enveloping Semi-group were studied. It allows to associate some properties on the topological compactification to any pointed flows. These relations enable us to study a number of the properties of the principles of flows corresponding with using algebric properties. Also in this paper proofs to some theorems of these relations are given.
Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreAbstract:
This research to monitor the features of the historical method in the
thought of a linguistic scientist is known (ibin genieD. 392 AH by offering a
range of grammatical rules presented in his book (the properties and the
nature of their treatment on the basis of the historical method in accordance
with These are an important milestone in facilitating the grammatical rules and
display image "makes it more suitable for the social reality
The aims of this study are to explore the commercial artifacts in the following three kinds of vegetables oils, Nigella Sativa, Trigonella foenum-graecum Linn,and Zingiber officinale. These oils have been very popular medicinal plants which are commonly used in traditional medicine .These commercial oils have been compared with the extracts of these plants.
The physical properties of extracts and commercial oils of these plants have been stuied. We observed that the refractive index of the plants matches and non-significant, while specific gravity of Nigella Sativa has similar specific gravity in both extracts and commercial oil in contrast with Trigonella foenum Linn,and Zingiber officinale and we found significant difference (P<
This study was carried out to assess genetic diversity of ten cultivars of Rice (Oryza sativa L.). One of DNA markers based on Polymerase Chain Reaction (PCR) was used namely DAF markers (DNA Amplification Fingerprint). Six primers were tested, the results showed, that no amplification products using the primers OPD.14 and OPM.5. Two primers (OPX.8 and OPT.2) produced monomorphic band across all cultivars, while only two primers generated polymorphic bands. The number of total bands produced from one of them (OPN.7) were sixteen. Also this primer produced ten polymorphic profiles (DAF patterns) which were unique to the ten cultivars that could be distinguished. The number of total bands generated by primer OPX.1 were thirteen and this prim
... Show MoreThis study represents an optical biosensor for early skin cancer detection using cysteine-cupped CdSe/CdS Quantum Dots (QDs). The study optimizes QD synthesis, surface, optical functionalization, and bioconjugation to enhance specificity and sensitivity for early skin cancer cell detection. The research provides insights into QD interactions with skin cancer biomarkers, demonstrating high-contrast, precise cellular imaging. Cysteine-capped CdSe/CdS absorption spectra reveal characteristic peaks for undamaged DNA, while spectral shifts indicate structural changes in skin-cancer-damaged DNA. Additionally, fluorescence spectra show sharp peaks for undamaged DNA and notable shifts and intensity variations when interacting with skin cancer. This
... Show MoreResearch,s Summary The purpose of the research was to specify the standerd Levels for results of basketball for Iraqi young sters, Becuse there werenot the standerd Levels which related to the testings abilities of the players based on plying centers specially the physical abilities, This made weakness in arrangement and putting the suitable training studies for different age stadges which suitable with game ,s requirements, besides evaluation the performance of the plyers in common and the levels of the coachs train in special according to the scientific style. The researchers depended on (8) special testings of chossen physical abilities, These testings applied on the teams, young players for sharing clubs among excellent series of basket
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More