Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system. A new features selection method is proposed based on DNA encoding and on DNA keys positions. The current system has three phases, the first phase, is called pre-processing phase, which is used to extract the keys and their positions, the second phase is training phase; the main goal of this phase is to select features based on the key positions that gained from pre-processing phase, and the third phase is the testing phase, which classified the network traffic records as either normal or attack by using specific features. The performance is calculated based on the detection rate, false alarm rate, accuracy, and also on the time that include both encoding time and matching time. All these results are based on using two or three keys, and it is evaluated by using two datasets, namely, KDD Cup 99, and NSL-KDD. The achieved detection rate, false alarm rate, accuracy, encoding time, and matching time for all corrected KDD Cup records (311,029 records) by using two and three keys are equal to 96.97, 33.67, 91%, 325, 13 s, and 92.74, 7.41, 92.71%, 325 and 20 s, respectively. The results for detection rate, false alarm rate, accuracy, encoding time, and matching time for all NSL-KDD records (22,544 records) by using two and three keys are equal to 89.34, 28.94, 81.46%, 20, 1 s and 82.93, 11.40, 85.37%, 20 and 1 s, respectively. The proposed system is evaluated and compared with previous systems and these comparisons are done based on encoding time and matching time. The outcomes showed that the detection results of the present system are faster than the previous ones.
Background: Acute appendicitis is regarded as one of the most common inflammation that needs surgical intervention. Different scoring systems have been used for diagnosing of acute appendicitis. ALVARADO score is one of the most widely used score in diagnosing of acute appendicitis, but the accuracy of the latter is insufficiently low in Middle-East patients. Thus a new scoring system called RIPASA score has been designed for diagnosing of acute appendicitis in those patients. The aim of this study is to use RIPASA score and compare its result with ALVARADO score in diagnosing of acute appendicitis.
Subjects and Methods: The study includes 200 patients with symptoms and signs of
... Show MoreRKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
SYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and study the characterization of a relative humidity sensor based on a polymer-infiltrated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) reflection mode. The fabrication of the sensor only involves splicing and cleaving Photonic Crystal Fiber (PCF) with Single Mode Fiber (SMF). A stub of (LMA-10) PCF spliced to SMF (Corning-28). In the splice regions. The PCFI sensor operation based on the adsorption and desorption of water vapour at the silica-air interface within the PCF. The sensor shows a high sensitivity to RH variations from (27% RH - 95% RH), with a change in its reflected powe
... Show MoreA tunable band pass filter based on fiber Bragg grating sensor using an in-fiber Mach-Zender interferometer with dual micro-cavities is presented. The micro-cavity was formed by splicing together a conventional single-mode fiber and a solid core photonic crystal fiber (SCPCF) with simple arc discharge technique. Different parameters such as arc power, length of the SCPCF and the overlap gap between samples were considered to control the fabrication process. The ellipsoidal air-cavity between the two fibers forms Fabry-Perot cavity. The diffraction loss was very low due to short cavity length. Ellipsoidal shape micro-cavities were experimentally achieved parallel to the propagation axis having dimensions of (24.92 – 62.32) μm of width
... Show MoreBackground: This in vitro study measure and compare the effect of light curing tip distance on the depth of cure by measuring vickers microhardness value on two recently launched bulk fill resin based composites Tetric EvoCeram Bulk Fill and Surefil SDR Flow with 4 mm thickness in comparison to Filtek Z250 Universal Restorative with 2 mm thickness. In addition, measure and compare the bottom to top microhardness ratio with different light curing tip distances. Materials and Method: One hundred fifty composite specimens were obtained from two cylindrical plastic molds the first one for bulk fill composites (Tetric EvoCeram Bulk Fill and Surefil SDR Flow) with 4 mm diameter and 4 mm depth, the second one for Filtek Z250 Universal Restorative
... Show MoreMedication safety is an important part of the comprehensive patient safety term. Medication safety is gaining more attention as the World Health Organization set the goal of decreasing medication harm by (50%) for the next 5 years when launching the third global challenge. Studying medication safety in the risk groups such as young ages, children are crucial to learn more about the effect of medicines in this risk group since they are not included in the clinical trials. Adverse drug reaction is defined as any harm resulted from the drug itself during medical process journey, while medication errors are any harm resulted from the treatment process rather than the drug or it is the result of the failure in a step of the treatment process
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very
... Show MoreMicrofluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s)
... Show MoreUsing watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a
... Show More