Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system. A new features selection method is proposed based on DNA encoding and on DNA keys positions. The current system has three phases, the first phase, is called pre-processing phase, which is used to extract the keys and their positions, the second phase is training phase; the main goal of this phase is to select features based on the key positions that gained from pre-processing phase, and the third phase is the testing phase, which classified the network traffic records as either normal or attack by using specific features. The performance is calculated based on the detection rate, false alarm rate, accuracy, and also on the time that include both encoding time and matching time. All these results are based on using two or three keys, and it is evaluated by using two datasets, namely, KDD Cup 99, and NSL-KDD. The achieved detection rate, false alarm rate, accuracy, encoding time, and matching time for all corrected KDD Cup records (311,029 records) by using two and three keys are equal to 96.97, 33.67, 91%, 325, 13 s, and 92.74, 7.41, 92.71%, 325 and 20 s, respectively. The results for detection rate, false alarm rate, accuracy, encoding time, and matching time for all NSL-KDD records (22,544 records) by using two and three keys are equal to 89.34, 28.94, 81.46%, 20, 1 s and 82.93, 11.40, 85.37%, 20 and 1 s, respectively. The proposed system is evaluated and compared with previous systems and these comparisons are done based on encoding time and matching time. The outcomes showed that the detection results of the present system are faster than the previous ones.
The problem of text recognition and its applicability as part of images captured in the wild has gained a significant attention from the computer vision community in recent years. In contrast to the recognition of printed documents, scene text recognition is a difficult problem. Contrary to recognition of printed documents, recognizing a scene text is a challenging problem. Many researches focus on the problem of recognizing text extracted from natural scene images. Significant attempts have been made to address this problem in recent past. However, many of these attempts work on utilizing availability of strong context, which naturally limits the dictionary. This paper presents a review of recent papers related to scene text
... Show MoreMedical image segmentation is a frequent processing step in image medical understanding and computer aided diagnosis. In this paper, development of range operator in image segmentation is proposed depending on dermatology infection. Three different block sizes have been utilized on the range operator and the developed ones to enhance the behavior of the segmentation process of medical images. To exploit the concept of range filtering, the extraction of the texture content of medical image is proposed. Experiment is conducted on different medical images and textures to prove the efficacy of our proposed filter was good results.
Breast cancer is the second deadliest disease infected women worldwide. For this
reason the early detection is one of the most essential stop to overcomeit dependingon
automatic devices like artificial intelligent. Medical applications of machine learning
algorithmsare mostly based on their ability to handle classification problems,
including classifications of illnesses or to estimate prognosis. Before machine
learningis applied for diagnosis, it must be trained first. The research methodology
which isdetermines differentofmachine learning algorithms,such as Random tree,
ID3, CART, SMO, C4.5 and Naive Bayesto finds the best training algorithm result.
The contribution of this research is test the data set with mis
The gaps and cracks in an image result from different reasons and affect the images. There are various methods concerning gaps replenishment along with serious efforts and proposed methodologies to eliminate cracks in diverse tendencies. In the current research work a color image white crack in-painting system has been introduced. The proposed inpainting system involved on two algorithms. They are Linear Gaps Filling (LGF) and the Circular Gaps Filling (CGF). The quality of output image depends on several effects such as: pixels tone, the number of pixels in the cracked area and neighborhood of cracked area and the resolution the image. The quality of the output images of two methods (linear method: average Peak Signal to Noise Ratio (PS
... Show MoreImage classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show MoreIn this review paper, several research studies were surveyed to assist future researchers to identify available techniques in the field of infectious disease modeling across complex networks. Infectious disease modelling is becoming increasingly important because of the microbes and viruses that threaten people’s lives and societies in all respects. It has long been a focus of research in many domains, including mathematical biology, physics, computer science, engineering, economics, and the social sciences, to properly represent and analyze spreading processes. This survey first presents a brief overview of previous literature and some graphs and equations to clarify the modeling in complex networks, the detection of societie
... Show MoreABSTRACT
In this research been to use some of the semi-parametric methods the based on the different function penalty as well as the methods proposed by the researcher because these methods work to estimate and variable selection of significant at once for single index model including (SCAD-NPLS method , the first proposal SCAD-MAVE method , the second proposal ALASSO-MAVE method ) .As it has been using a method simulation time to compare between the semi-parametric estimation method studied , and various simulation experiments to identify the best method based on the comparison criteria (mean squares error(MSE) and average mean squares error (AMSE)).
And the use
... Show MoreIn this research, a group of gray texture images of the Brodatz database was studied by building the features database of the images using the gray level co-occurrence matrix (GLCM), where the distance between the pixels was one unit and for four angles (0, 45, 90, 135). The k-means classifier was used to classify the images into a group of classes, starting from two to eight classes, and for all angles used in the co-occurrence matrix. The distribution of the images on the classes was compared by comparing every two methods (projection of one class onto another where the distribution of images was uneven, with one category being the dominant one. The classification results were studied for all cases using the confusion matrix between ev
... Show MoreGenetic polymorphisms of genes whose products are responsible for activities, such as xenobiotic metabolism, mutagen detoxification and DNA-repair, have been predicted to be associated with the risk of developing lung cancer (LC). The association of LC with tobacco smoking has been extensively investigated, but no studies have focused on the Arab ethnic- ity. Previously, we examined the association between genetic polymorphisms among Phase I and Phase II metabolism genes and the risk of LC. Here, we extend the data by examining the correlation of OGG1 Ser326Cys combined with CYP1A1 (Ile462Val and MspI) and GSTP1 (Ile105Val and Ala103Val) polymorphisms with the risk of LC. Polymerase chain reaction- restriction fragment length polymorphism (
... Show MoreThis work highlights the estimation of the Al-Khoser River water case that disposes of its waste directly into the Tigris River within Mosul city. Furthermore, the work studies the effects of environmental and climate change and the impact of pollution resulting from waste thrown into the Al-Khoser River over the years. Al-Khoser River is located in the Northern Mesopotamia of Mosul city. This study aims to detect the polluted water area and the polluted surrounding area. Temporal remote sensing data of different Landsat generations were considered in this work, specifically Enhanced Thematic Mapper Plus of 2000 and Operational Land Imager of 2015. The study aims to measure the amount of pollution in the study area over 15 years
... Show More