Preferred Language
Articles
/
WBbCvYoBVTCNdQwCM6Q9
Features Selection for Intrusion Detection System Based on DNA Encoding

Intrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system. A new features selection method is proposed based on DNA encoding and on DNA keys positions. The current system has three phases, the first phase, is called pre-processing phase, which is used to extract the keys and their positions, the second phase is training phase; the main goal of this phase is to select features based on the key positions that gained from pre-processing phase, and the third phase is the testing phase, which classified the network traffic records as either normal or attack by using specific features. The performance is calculated based on the detection rate, false alarm rate, accuracy, and also on the time that include both encoding time and matching time. All these results are based on using two or three keys, and it is evaluated by using two datasets, namely, KDD Cup 99, and NSL-KDD. The achieved detection rate, false alarm rate, accuracy, encoding time, and matching time for all corrected KDD Cup records (311,029 records) by using two and three keys are equal to 96.97, 33.67, 91%, 325, 13 s, and 92.74, 7.41, 92.71%, 325 and 20 s, respectively. The results for detection rate, false alarm rate, accuracy, encoding time, and matching time for all NSL-KDD records (22,544 records) by using two and three keys are equal to 89.34, 28.94, 81.46%, 20, 1 s and 82.93, 11.40, 85.37%, 20 and 1 s, respectively. The proposed system is evaluated and compared with previous systems and these comparisons are done based on encoding time and matching time. The outcomes showed that the detection results of the present system are faster than the previous ones.

Scopus
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Iranian Journal Of Earth Sciences
Resistivity surveys application for detection of shallow caves in a case example from Western Iraq

Scopus (1)
Scopus
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
EEG Signals Analysis for Epileptic Seizure Detection Using DWT Method with SVM and KNN Classifiers

Epilepsy is a critical neurological disorder with critical influences on the way of living of its victims and prominent features such as persistent convulsion periods followed by unconsciousness. Electroencephalogram (EEG) is one of the commonly used devices for seizure recognition and epilepsy detection. Recognition of convulsions using EEG waves takes a relatively long time because it is conducted physically by epileptologists. The EEG signals are analyzed and categorized, after being captured, into two types, which are normal or abnormal (indicating an epileptic seizure).  This study relies on EEG signals which are provided by Arrhythmia Database. Thus, this work is a step beyond the traditional database mission of delivering use

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jul 11 2017
Journal Name
The 39th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc'17)
Higuchi fractal dimension of the electroencephalogram as a biomarker for early detection of Alzheimer's disease

It is widely accepted that early diagnosis of Alzheimer's disease (AD) makes it possible for patients to gain access to appropriate health care services and would facilitate the development of new therapies. AD starts many years before its clinical manifestations and a biomarker that provides a measure of changes in the brain in this period would be useful for early diagnosis of AD. Given the rapid increase in the number of older people suffering from AD, there is a need for an accurate, low-cost and easy to use biomarkers that could be used to detect AD in its early stages. Potentially, the electroencephalogram (EEG) can play a vital role in this but at present, no reliable EEG biomarker exists for early diagnosis of AD. The gradual s

... Show More
View Publication
Scopus (44)
Crossref (31)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
A Magnetic Field Concentration Method for Magnetic Flux Leakage Detection of Rail-Top Surface Cracks

View Publication
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Toxicon
Methods for simultaneous detection of the cyanotoxins BMAA, DABA, and anatoxin-a in environmental samples

View Publication Preview PDF
Scopus (33)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Applied Soft Computing
A new evolutionary algorithm with locally assisted heuristic for complex detection in protein interaction networks

View Publication
Scopus (12)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
Enzyme Linked Immunosorbent Assay for Fumonisin B1 Detection in Local Corn Seeds from Baghdad-Iraq

Fungi produce a series of toxic compounds on corn, especially Fumonisin B1 (FB1) toxin produced by Fusarium spp. and promoting cancer activity in humans and animals. This study aimed to the isolation and identification of fungi associated with local corn seeds and the detection for the presence of FB1 by using ELISA technique. Thirty samples of corn ears were collected from silos and markets in Baghdad city during the period from November 2018 to March 2019. The present study found that Fusarium was the dominant isolate among fungi in terms of the relative density 57.07%, followed by Aspergillus 31.17%, Rhizopus 3.36%, Alternaria 2.88%, Mucor 2.16%, Penicillium 1.92%, Trichothecium 0.96%, and Helminthosporium 0.48%. FB1 was detected in a

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends

View Publication
Scopus (26)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sun Jul 01 2012
Journal Name
2012 International Symposium On Innovations In Intelligent Systems And Applications
Edge detection for fast block-matching motion estimation to enhance Mean Predictive Block Matching algorithm

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref