Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the exhibited larger eccentricity. In the form of an initial camber and compressive stresses in the bottom flange prior to loading, this reasonable eccentricity induces reverse loading on the reinforced beams, reducing the net tensile stress induced during loading. Using CFRP laminates on the concrete slab for continuous composite beams is more effective in enhancing the beam capacity in comparison with using the external post-tension. However, reductions in the beam ductility were obtained.
Abstract
Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC) on properties of composite coatings. I
... Show MoreFicus (FIC) leaf extract used as corrosion inhibitor for carbon steel alloy (C.S) in two corrosive environments (saline and acidic) with four concentrations (1, 2, 3 and 4 ppm) at varied temperature range between (298-328 K) using electrochemical polarization measurements. The importance of this work focused on the use the green chemistry that is far from the chemical materials effect. The results of polarization presented the FIC inhibitor consider a mixed type (anodic and cathodic) inhibitor. Tafel curve used to evaluate the corrosion inhibition activity. In a saline medium, the best inhibitor efficiency reaches to (87%) in 2 ppm and IE% reach to (99%) for HCl medium inhibited by 1ppm. Langmuir isotherm obeys the study by thermodynamic pa
... Show MoreWhen employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model
... Show MoreThis study aims to analyze the flow migration of individuals between Iraqi governorates using real anonymized data from Korek Telecom company in Iraq. The purpose of this analysis is to understand the connection structure and the attractiveness of these governorates through examining the flow migration and population densities. Hence, they are classified based on the human migration at a particular period. The mobile phone data of type Call Detailed Records (CDRs) have been observed, which fall in a 6-month period during COVID-19 in the year 2020-2021. So, according to the CDRs nature, the well-known spatiotemporal algorithms: the radiation model and the gravity model were applied to analyze these data, and they are turned out to be comp
... Show MoreThe high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:
Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alk)
The developed model will aid the predictiv
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreThe effect of air injection device on the performance of airlift pump used for water pumping has been studied numerically and experimentally. An airlift pump of dimensions 42mm diameter and 2200 mm length with conventional and modified air injection device was considered. A modification on conventional injection device (normal air-jacket type) was carried out by changing injection angle from 90 (for conventional) to 22.5 (for modified). Continuity and Navier-Stokes equations in turbulent regime with an appropriate two-phase flow model (VOF) and turbulent model ( ) in two dimensions axisymmetry flow were formulated and solved by using the known package FLUENT version (14.5). The numerical and experimental investiga
... Show MoreThis paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo
... Show More