Strengthening of composite beams is highly needed to upgrade the capacities of existing beams. The strengthening methods can be classified as active or passive techniques. Therefore, the main purpose of this study is to provide detailed FE simulations for strengthened and unstrengthened steel–concrete composite beams at the sagging and hogging moment regions with and without profiled steel sheeting. The developed models were verified against experimental results from the literature. The verified models were used to present comparisons between the effect of using external post-tensioning and CFRP laminates as strengthening techniques. Applying external post-tensioning at the sagging moment regions is more effective because of the exhibited larger eccentricity. In the form of an initial camber and compressive stresses in the bottom flange prior to loading, this reasonable eccentricity induces reverse loading on the reinforced beams, reducing the net tensile stress induced during loading. Using CFRP laminates on the concrete slab for continuous composite beams is more effective in enhancing the beam capacity in comparison with using the external post-tension. However, reductions in the beam ductility were obtained.
Three mesoporous silica with different functional group were prepared by one-step synthesis based on the simultaneous hydrolysis and condensation of sodium silicate with organo - silane in the presence of template surfactant polydimethylsiloxane - polyethyleneoxide (PDMS - PEO). The prepared materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and nitrogen adsorption/desorption experiments. The results indicate that the preparation of methyl and phenyl functionalized silica were successful and the mass of methyl and phenyl groups bonded to the silica structure are 15, 38 mmol per gram silica. The average diameter of the silica particles are 103.51,
... Show MoreBackground: Recent implant surgical approach aims to cause less trauma, invasiveness and pain as much as possible and to reduce patient and surgeon discomfort, time of surgery and time needed for functional implant loading. Flapless surgical techniques considered recently as one of the most popular techniques that may achieve these aims especially enhancing osseointegration and subsequently implant stability within less time than the traditional flapped surgical technique. So this study aimed to make a comparison between flapped and flapless surgical techniques in resulted implant stability according to resonance frequency analysis RFA and in duration of surgical operation. Materials and methods: A total of 26 patients with 41 implants (o
... Show MoreThin films of (CuO)x(ZnO)1-x composite were prepared by pulsed laser deposition technique and x ratio of 0≤ x ≤ 0.8 on clean corning glass substrate at room temperatures (RT) and annealed at 373 and 473K. The X-ray diffraction (XRD) analysis indicated that all prepared films have polycrystalline nature and the phase change from ZnO hexagonal wurtzite to CuO monoclinic structure with increasing x ratio. The deposited films were optically characterized by UV-VIS spectroscopy. The optical measurements showed that (CuO)x(ZnO)1-x films have direct energy gap. The energy band gaps of prepared thin films
This research aims to analyze the indicators of spatial variation in the guide of health field in both Al-Adhamiyah and Rusafa districts according to the environmental and administrative units in 2016. The analysis was done by groups of health guide indicators. The objectives of the study were to identify the spatial variation of health services and assess the health situation for families following the environmental and administrative units of the studied area. Such objectives can be done by specifying the extent of the families’ consent to the type of services, measuring the cases of deprivation, and identifying the most deprived areas. The study has finally concluded that there is a clear spatial variation between the indicators and
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreThis work has been done with using of epoxy resin mixed with Granite powder were weighted by percent volume (5,10,15, and 20)%and then mixed with epoxy polymer to compose polymer composite. Hand lay-up technique is used in fabrication of the composite samples. Hardness test was carried out for the proper samples in both normal condition and after immersion in HCL (1 M and 2 M) solutions for periods ranging up to 10 weeks. After comparing the results between the polymer and their composite, the hardness increased with increasing Granite weight percent, it was found that Hardness were greater for the composites before immersion compared with their values after immersion.