Preferred Language
Articles
/
W4b6poYBIXToZYALXJw4
Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins
...Show More Authors

This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are evaluated. The outcomes showed that the arc-shaped fins could greatly enhance the PCMs’ melting rate and the associated heat-storage properties. The melting rate is 17% and 93.1% greater for the case fitted with an inline distribution of the fins with a circular angle of 90° and an upward direction, respectively, than the cases with uniform rectangular fins and no fins, which corresponded to the shorter melting time of 14.5% and 50.4%. For the case with arc-shaped fins with a 90° circular angle, the melting rate increases by 9% using a staggered distribution. Compared to the staggered fin distribution, adding an extra fin to the bottom of the domain indicates adverse effects. The charging time reduces by 5.8% and 9.2% when the Reynolds number (Re) rises from 500 to 1000 and 1500, respectively, while the heat-storage rate increases by 6.3% and 10.3%. When the fluid inlet temperature is 55°C or 50°C, compared with 45°C, the overall charging time increases by 98% and 47%, respectively.

Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
Polyhedron
Novel dichloro (bis {2-[1-(4-methylphenyl)-1H-1, 2, 3-triazol-4-yl-κN3] pyridine-κN}) metal (II) coordination compounds of seven transition metals (Mn, Fe, Co, Ni, Cu, Zn and Cd)
...Show More Authors

Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Inorganica Chimica Acta
Synthesis, characterisation and electrochemistry of eight Fe coordination compounds containing substituted 2-(1-(4-R-phenyl-1H-1,2,3-triazol-4-yl)pyridine ligands, R = CH3, OCH3, COOH, F, Cl, CN, H and CF3.
...Show More Authors

Eight different Dichloro(bis{2-[1-(4-R-phenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})iron(II) compounds, 2–9, have been synthesised and characterised, where group R=CH3 (L2), OCH3 (L3), COOH (L4), F (L5), Cl (L6), CN (L7), H (L8) and CF3 (L9). The single crystal X-ray structure was determined for the L3 which was complemented with Density Functional Theory calculations for all complexes. The structure exhibits a distorted octahedral geometry, with the two triazole ligands coordinated to the iron centre positioned in the equatorial plane and the two chloro atoms in the axial positions. The values of the FeII/III redox couple, observed at ca. −0.3 V versus Fc/ Fc+ for complexes 2–9, varied over a very small potential range of 0.05 V.

... Show More
Preview PDF
Publication Date
Mon Jun 17 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Synthesis and Spectral Studies on Cobalt(II), Nickel(II), Copper(II), Palladium(II), Platinum(II, IV), Zinc(II), Cadmium(II) and Mercury(II) Complexes of(1, 2-diaminoethane-N,N'-bis(2- butylidine-3 onedioxime)
...Show More Authors

The synthesis of [1,2-diaminoethane-N,N'-bis(2-butylidine-3- onedioxime)] [II2L] and its cobalt(II), nickel(II), copper(II), palladium(II), platinum(II, IV), zinc(II), cadmium(II) and mercury(II) complexes is reported. The compounds were characterised by elemental analyses, spectroscopic methods [I.R, UV-Vis, ('H NMR. and EI mass for H2L)], molar conductivities, magnetic moments. I.R. spectra show that (H2L) behaves as a neutral or mononegative ligand depending on the nature of the metal ions. The molar conductance of the complexes in (DMSO) is commensurate with their ionic character. On the basis of the above measurements, a square planar geometry is proposed for NOD, Pd(II), and Pt(II) complexes, and an octahedr-al structure with trans

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 01 2023
Journal Name
Chemical Methodologies
Investigations on TiO<inf>2</inf>-NiO@In<inf>2</inf>O<inf>3</inf> Nanocomposite Thin Films (NCTFs) for Gas Sensing: Synthesis, Physical Characterization, and Detection of NO<inf>2</inf> and H<inf>2</inf>S Gas Sensors
...Show More Authors

Scopus (11)
Scopus