This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are evaluated. The outcomes showed that the arc-shaped fins could greatly enhance the PCMs’ melting rate and the associated heat-storage properties. The melting rate is 17% and 93.1% greater for the case fitted with an inline distribution of the fins with a circular angle of 90° and an upward direction, respectively, than the cases with uniform rectangular fins and no fins, which corresponded to the shorter melting time of 14.5% and 50.4%. For the case with arc-shaped fins with a 90° circular angle, the melting rate increases by 9% using a staggered distribution. Compared to the staggered fin distribution, adding an extra fin to the bottom of the domain indicates adverse effects. The charging time reduces by 5.8% and 9.2% when the Reynolds number (Re) rises from 500 to 1000 and 1500, respectively, while the heat-storage rate increases by 6.3% and 10.3%. When the fluid inlet temperature is 55°C or 50°C, compared with 45°C, the overall charging time increases by 98% and 47%, respectively.
Introduction and Aim: Forkhead box P3 (FOXP3) and interleukin-10 (IL-10) are the key regulators controlling the activity of Treg cells, which are crucial for maintaining immune tolerance and reducing autoimmune reactions. The objective of this study was to investigate the potential utility of elevated levels of FOXP3 and IL-10 gene expression as a diagnostic indicator in patients with rheumatoid arthritis (RA). Materials and Methods: The study used quantitative polymerase chain reaction (qPCR) to examine the expression levels of FOXP3 and IL-10 transcripts in whole blood samples from Iraqi patients with rheumatoid arthritis. A group of healthy control subjects were also included in the study. Results: In blood samples taken fr
... Show MoreAnthropogenic activities cause soil pollution with different serious pollutants, such as polycyclic aromatic hydrocarbon (PAHs) compounds. This study assessed the contamination of PAHs in soil samples collected from 30 sites divided into eight groups (residential areas, oil areas, agricultural areas, roads, petrol stations, power plants, public parks and electrical generators) in Basrah city-Iraq during 2019-2020. The soil characteristics including (moisture, pH, EC and TOC) were measured. Results showed the following ranges (soil moisture (0.03-0.18%),pH (6.90-8.16), EC (2.48-104.80) mS/cm and TOC (9.90-20.50%)). Gas Chromatography (GC) was used to measure PAHs in extracted soil samples. The total PAH range (499.96 - 5864.86) ng/g dr
... Show MoreTillage tools are subject to friction and low-stress abrasive wear processes with the potential deterioration of the desired soil quality, loss of mechanical weed efficacy, and downtime for replacing worn tools. Limited experimental methods exist to quantify investigate the effect of wear-resistant coatings on shape parameters of soil-engaging tools. ASTM standard sand/rubber wheel abrasion and pin-on-disk tests are not able to simulate wear characteristics of the complex shape of the tillage tools. Even though the tribology of tillage tools can be realistic from field tests, tillage wear tests under field conditions are expensive and often challenging to generate repeatable engineeri
The critical micelle concentration (CMC) of nonylphenolethoxylate (NPE) surfactant has been determined by measuring the surface tension as a function of the molar concentration of the surfactant in aqueous and binary mixture of water + methanol solutions at a temperature range from 20?C to 35?C. The interfacial parameters ?max, Amin, ?cmc and ?G?ads were calculated. The results indicate that the CMC increases as the temperature increases and that the addition of methanol the CMC decreases. The thermodynamic parameters such as standard Gibbs free energy (?G?), enthalpy (?H?), and entropy (?S?) of micellization were estimated using the change of CMC with temperature. The enthalpy – entropy compensation behavior of the surfactant was evaluat
... Show MoreThis study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in th
... Show MorePyridine-2, 6-dicarbohydrazide comp (2) was synthesized from ethanolic solution of diethyl pyridine-2, 6- dicarboxylate comp (1) with excess of hydrazine hydrate. Newly five polymers (P1-P5) were synthesized from reaction of pyridine-2, 6-dicarbohydrazide comp (2) with five different di carboxylic acid in the presence of poly phosphoric acid (PPA). The antibacterial activity of the synthesized polymers was screened against some gram positive and gram negative bacteria. Antifungal activity of these polymers was evaluated in vitro against some yeast like fungi such as albicans (candida albicans). Polymers P3, P4 and P5 exhibited highest antibacterial and antifungal against all microorganisms under test.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa