A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different concentrations, and five ultrasonication times (15, 30, 60, 90, and 120 min) on the stability of water-based graphene nanoplatelets (GNPs) nanofluids. In addition, the viscosity and thermal conductivity of the highest stability samples were measured at different temperatures. For this aim, nineteen different nanofluids with 0.1 wt% concentration of GNPs were prepared via the two-step method. An ultrasonication probe was utilized to disperse the GNPs in distilled water. UV–vis spectrometry, zeta potential, average particle size, and Transmission Electron Microscopy (TEM) were helpful in evaluating the stability and characterizing the prepared nanofluids. TEM and zeta potential results were in agreement with the UV–vis measurements. The highest nanofluid stability was obtained at 60-min ultrasonication time. The prepared water-based pristine GNPs nanofluids were not stable, and the stability was improved with the addition of surfactants. The presence of SDBS, SDS, and CTAB surfactants in the nanofluids resulted in excessive foam. The best water-based GNPs nanofluid was selected in terms of better stability, higher thermal conductivity, and lower viscosity. From all the samples that were prepared in this research, the (1–1) SDBS–GNPs sample with 60-min ultrasonication showed the highest stability (82% relative concentration after 60 days), the second better enhancement in the thermal conductivity of the base fluid (8.36%), and nearly the lowest viscosity (7.4% higher than distilled water).
This research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.
The increase of surface polarity after coating cause decreas
... Show MoreThe plant licorice is considered important plants as nutritionally and medically and economically, as a rich in phytochemical, vitamins and minerals, and being widely available, Research indicated the presence of many nutrients such as (proteins, Carbohydrates, vitamins and minerals) as well as presence of Glycyrrhizin which responsible of sweet taste, that allowing the possibility to use it as natural intensity sweetener with few calories in Sweetening of many food. This research is aimed to study the Stability of Glycyrrhizin toward the various manufacturing conditions such as (thermal treatment, pH of foods and microwaves), so three factorial experiments was implemented to find out the Stability as following: 100C° - 121C° - Microwa
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreABSTRACTBackground: cochlear implants are electronic devices that convert sound energy into electrical signals to stimulate ganglion cells and cochlear nerve fibers. These devices are indicated for patients with severe to profound sensorineural hearing losses who receive little or no benefit from hearing aids. The implant basically takes over the function of the cochlear hair cells. The implant consists of external components (microphone, speech processor and transmitting coil) and internal components (receiver stimulator and electrode array). The implant is inserted via a trans mastoid facial recess approach to the round window and scala tympani.Objectives: to determine the effectiveness and safety of non fixation method in cochlear imp
... Show MoreThe aim of this study is to evaluate in-vitro activity of Cefamandol (Cfm) and Ceftazidime (Cfz), in combination with Clavulanic acid (CA) against ten complicated multiresistant uropathogenic E.coli .One hundred clinical strains were isolated from patients with chronic urinary tract infections (UTIs), these isolates were identified by the Api identification systems. The antimicrobial susceptibility tests were determined by Kirby-Bauer method, all of them were sensitive to Imipenem (Imp). Ten strains were chosen for the present study, they were resistant to Ampicillin (Amp), Amoxicillin (Amo), Carbenicillin (Cb), Ticarcillin (Tic), Azlocillin (Azl), Amoxicillin\ Potassium Clavulanate {Augmentin(Amc)}, (Amo\CA), Ticarcillin\ Potas
... Show MoreABSTRACT In dam construction stages when an earth embankment has retained a reservoir with constant water surface elevation for a long time, seepage conditions within the embankment will be reach a steady state. If it is necessary to drain the reservoir quickly, the pore-water pressures in the embankment may remain relatively high while the stabling effect of the reservoir's weight along the upstream (U/S) side for the embankment has removed. This process is referring to as "Rapid Drawdown" and may be cause instability in the upstream (U/S) face of the embankment. Kongele dam is one of the proposed earth dams to be implement within the current plan in Iraq. The authors study pore water pressure and the effect of rapid drawdown for the dam d
... Show MoreBaghdad Metro is a vital project to fulfill the rapidly increased traffic volume requirements. The proposed metro will connect both sides of Baghdad City, passing under the Tigris River. This study is employed finite elements software (PLAXIS 3D) to evaluate the seepage force developed around the sub-river segment during different construction stages and for other water levels of Tigris. The study found that when the water level changes from maximum to minimum, the developed seepage force decreases by (8 to 13%) and (22 to 27%) respectively. The seepage forces were found to be maximum during the excavation stage. The concrete lining process led to a noticeable reduction in seepage forces at all locations. The study also
... Show MoreIn this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.