A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different concentrations, and five ultrasonication times (15, 30, 60, 90, and 120 min) on the stability of water-based graphene nanoplatelets (GNPs) nanofluids. In addition, the viscosity and thermal conductivity of the highest stability samples were measured at different temperatures. For this aim, nineteen different nanofluids with 0.1 wt% concentration of GNPs were prepared via the two-step method. An ultrasonication probe was utilized to disperse the GNPs in distilled water. UV–vis spectrometry, zeta potential, average particle size, and Transmission Electron Microscopy (TEM) were helpful in evaluating the stability and characterizing the prepared nanofluids. TEM and zeta potential results were in agreement with the UV–vis measurements. The highest nanofluid stability was obtained at 60-min ultrasonication time. The prepared water-based pristine GNPs nanofluids were not stable, and the stability was improved with the addition of surfactants. The presence of SDBS, SDS, and CTAB surfactants in the nanofluids resulted in excessive foam. The best water-based GNPs nanofluid was selected in terms of better stability, higher thermal conductivity, and lower viscosity. From all the samples that were prepared in this research, the (1–1) SDBS–GNPs sample with 60-min ultrasonication showed the highest stability (82% relative concentration after 60 days), the second better enhancement in the thermal conductivity of the base fluid (8.36%), and nearly the lowest viscosity (7.4% higher than distilled water).
The real and imaginary part of complex dielectric constant for InAs(001) by adsorption of oxsagen atoms has been calculated, using numerical analysis method (non-linear least square fitting). As a result a mathematical model built-up and the final result show a fairly good agreement with other genuine published works.
Bendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreAbstract
Semiconductor-based gas sensors were prepared, that use n-type tin oxide (SnO2) and tin oxide: zinc oxide composite (SnO2)1-x(ZnO)x at different x ratios using pulse laser deposition at room temperature. The prepared thin films were examined to reach the optimum conditions for gas sensing applications, namely X-ray diffraction, Hall effect measurements, and direct current conductivity. It was found that the optimum crystallinity and maximum electron density, corresponding to the minimum charge carrier mobility, appeared at 10% ZnO ratio. This ratio appeared has the optimum NO2 gas sensitivity for 5% gas concentration at 300 °C working temperat
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show MoreWe investigated at the optical properties, structural makeup, and morphology of thin films of cadmium telluride (CdTe) with a thickness of 150 nm produced by thermal evaporation over glass. The X-ray diffraction study showed that the films had a crystalline composition, a cubic structure, and a preference for grain formation along the (111) crystallographic direction. The outcomes of the inquiry were used to determine these traits. With the use of thin films of CdTe that were doped with Ag at a concentration of 0.5%, the crystallization orientations of pure CdTe (23.58, 39.02, and 46.22) and CdTe:Ag were both determined by X-ray diffraction. orientations (23.72, 39.21, 46.40) For samples that were pure and those that were doped with
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreThis article includes designed and synthesized for bent-shaped liquid crystal molecules starting from 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of chloroacetylchloride in N, N-dimethyl formamide (DMF) and triethylamine (TEA) to product compound [I] ,then reacted the later compound with two moles of 4-hydroxybenzonitrile to yield nitrile compound [II]. Likewise, reaction 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of ethylchloroacetate with fused sodium acetate in ethanol to create an ester compound [III], and then the later compound was reacted with two moles of hydrazine hydrate in ethanol to obtained hydrazide acid compound [IV]. After that, the compound [IV] reacted with two moles of ethyl acetoacetate in
... Show More