A pioneering idea for increasing the thermal performance of heat transfer fluids was to use ultrafine solid particles suspended in the base fluid. Nanofluids, synthesized by mixing solid nanometer sized particles at low concentrations with the base fluid, were used as a new heat transfer fluid and developed a remarkable effect on the thermophysical properties and heat transfer coefficient. For any nanofluid to be usable in heat transfer applications, the main concern is its long-term stability. The aim of this research is to investigate the effect of using four different surfactants (sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), cetyl trimethylammonium bromide (CTAB), and gum Arabic (GA)), each with three different concentrations, and five ultrasonication times (15, 30, 60, 90, and 120 min) on the stability of water-based graphene nanoplatelets (GNPs) nanofluids. In addition, the viscosity and thermal conductivity of the highest stability samples were measured at different temperatures. For this aim, nineteen different nanofluids with 0.1 wt% concentration of GNPs were prepared via the two-step method. An ultrasonication probe was utilized to disperse the GNPs in distilled water. UV–vis spectrometry, zeta potential, average particle size, and Transmission Electron Microscopy (TEM) were helpful in evaluating the stability and characterizing the prepared nanofluids. TEM and zeta potential results were in agreement with the UV–vis measurements. The highest nanofluid stability was obtained at 60-min ultrasonication time. The prepared water-based pristine GNPs nanofluids were not stable, and the stability was improved with the addition of surfactants. The presence of SDBS, SDS, and CTAB surfactants in the nanofluids resulted in excessive foam. The best water-based GNPs nanofluid was selected in terms of better stability, higher thermal conductivity, and lower viscosity. From all the samples that were prepared in this research, the (1–1) SDBS–GNPs sample with 60-min ultrasonication showed the highest stability (82% relative concentration after 60 days), the second better enhancement in the thermal conductivity of the base fluid (8.36%), and nearly the lowest viscosity (7.4% higher than distilled water).
In order for the process of removing pollutants, including dyes, from the aquatic environment to be effective, plant wastes such as banana peels were used as adsorbent surfaces by thermally activating them (ABP) and modifying them with iron oxide nanoparticles (MABP), which were characterized using Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) techniques. They were applied in the field of Janus green (JG) dye adsorption for the batch system and studied the effect of several factors (adsorbent weight, contact time, initial concentration, and temperature). Their data were analyzed kinetically using first- and second-order kinetic models and they were found to follow the second order. Their data were also analyzed thro
... Show MoreThis research aims to study and analyze the reality of monetary policy and financial sustainability in Iraq through either a descriptive or analytical approach by trying to link and coordinate between monetary policy and fiscal policy to enhance economic sustainability. The research is based on the hypothesis that the monetary policy of Iraq contributes to achieving financial stability, which improves economic sustainability by providing aid and assistance to the state to reduce the budget deficit and exacerbate indebtedness. The author used the monetary policy indicators, the re-deduction of Treasury transfers by the central bank and the money supply, and financial sustainability indicators, including the public debt indicators and the
... Show MoreIn this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
The current research discussed biophysics data as a theoretical and applied knowledge base linking industrial design with the natural sciences at the level of applied strategies through which we can enrich the knowledge base of industrial design. The research focused on two main aspects of the scientific references for biophysics, namely: electromagnetism, and biomechanics. According to the performance and functional applications in designing the functions of industrial products at the electromagnetic level, it was found that remote sensing applications: such as fire sensors that were adopted from the insect (Black Beetle) and that their metaphors enable them to hear fire, and collision sensors, which were adopted from the insect
... Show MoreOne of the most enduring expressions of urban poverty in developing countries is the proliferation of slums and informal settlements .these settlements have the most deplorable living and environmental conditions within the city and are characterized by inadequate water supply, squalid conditions of environmental sanitation .overcrowded and dilapidated habitation, hazardous location .insecure tenure and vulnerability to serious health risks among many others .its in recognition of the of the development challenges to significantly improve the lives of at least 800000 people allover the country So our objectives in this research are the ensuring of a durable improvement of housing conditions and housing environment of poor people
... Show MoreThe impact of decorating Fe, Ru, Rh, and Ir metals upon the sensing capability of a gallium nitride nanotube (GaNNT) in detecting chlorine trifluoride (CT) was scrutinized using the density functionals B3LYP and B97D. The interaction of the pristine GaNNT with CT was a physical adsorption with the sensing response (SR) of approximately 6.9. After decorating the above-mentioned metals on the GaNNT, adsorption energy of CT changed from −5.8 to −18.6, −18.9, −19.4, and −20.1 kcal/mol by decorating the Fe, Ru, Rh, and Ir metals into the GaNNT surface, respectively. Also, the corresponding SR dramatically increased to 39.6, 52.3, 63.8, and 106.6. This shows that the sensitivity of the metal-decorated GaNNT (metal@GaNNT) increased by in
... Show MoreMass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
ract
This reaserch seeks To answer Wondering :(Is there a possibility employ strategic agility In companies sample Serving in Iraq ?)
This reaserch aims: explore Strategic Agility rely upon Dimensions that interact with each other to form the intcllectual frame Strategic Agility, These dimensions are: (Clarity of vision, Selected
... Show MoreThis study focused on the synthesis of novel polymers incorporating the 1,3,4-oxadiazole ring. Four polymers were specifically prepared by blending polymers (6-9) with polyvinyl alcohol (PVA) in defined ratios, resulting in the formation of blended polymers (10-13). The synthesized polymers were characterized using Fourier Transform Infrared (FTIR) spectroscopy and proton nuclear magnetic resonance (1H-NMR). The results showed that the structure aligned with the proposed synthetic polymers. Furthermore, the physical and thermal properties were studied using scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). Additionally, the biological activity was examined against two s
... Show More