Risk identification and assessment can be analysed using many risk management tools. Fishbone diagram is one of these techniques which can be employed, for the identification of the causes behind the construction failure, which has become a phenomenon that often gets repeated in several projects. If these failures are not understood and handled scientifically, it may lead to disputes between the project parties. Additionally, the construction failure also leads to an increase in the project budget, which in turn causes a delay in the completion of the projects. Punching shear in reinforcement slab may be one of the reasons for construction failures. However, there are many doubts about other causes that lead to this failure as well as the role of these causes in the construction failure. Also, there are many causes linked to this failure of which some fall on the designer and the others fall on the contractor. Thus, this research aims to determine the causes of punching shear failure in the concrete slab and its role in the failure using a logic managerial analysis. For this purpose, the applicability of the Fishbone diagram has been extended, for the analysis of probability as well as the impact of the risk of punching shear, thus elucidating the risk score of each category without ignoring the global risk. In this direction, interviews and questionnaires are conducted with numerous experts specialize in both the design and execution field of construction projects for identifying the most important causes that lead to the occurrence of punching shear failure. Further, the Fishbone diagram for punching shear’s risk illuminated that impact of some of the primary and secondary causes such as planning, designing, and maintenance is more than the expectation. Therefore, the concentration in these areas should be carried out by taking into consideration the adapt risk response plan to prevent or mitigate these risks.
A Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength ( 40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one
... Show MoreObjective: To find out the relationship between vaginal bleeding during third trimester and pregnancy outcomes. Methodology: A purposive sample is "Non-probability" of (100) women who had diagnostic vaginal bleeding during third trimester (27-40wk) of pregnancy, and who visited the Bint Al-Huda Hospital for the period from 15th Feb. to 17th May 2015.Validity and reliability of questionnaire are determined through pilot study. Descriptive and inferential statistical procedures were used to analyze the data, and the data were collected by using interview technique, constructed questionnaire has been desig
Nowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental
... Show MoreWhen the flange of a reinforced concrete spandrel beam is in tension, current design codes and specifications enable a portion of the bonded flexure tension reinforcement to be distributed over an effective flange width. The flexural behavior of the RC L-shaped spandrel beam when reinforcement is laterally displaced in the tension flange is investigated experimentally and numerically in this work. Numerical analysis utilizing the finite element method is performed on discretized flanged beam models validated using experimentally verified L-shaped beam specimens to achieve study objectives. A parametric study was carried out to evaluate the influence of various factors on the beam’s flexure behavior. Results showed that
... Show MoreA novel welded demountable shear connector for sustainable steel-concrete composite structures is proposed. The proposed connector consists of a grout-filled steel tube bolted to a compatible partially threaded stud, which is welded on a steel section. This connector allows for an easy deconstruction at the end of the service life of a building, promoting the reuse of both the concrete slabs and the steel sections. This paper presents the experimental evaluation of the structural behavior of the proposed connector using a horizontal pushout test arrangement. The effects of various parameters, including the tube thickness, the presence of grout infill, and the concrete slab compressive strength, were assessed. A nonlinear finite element mode
... Show MoreTo promote sustainable steel-concrete composite structures, it is essential to develop special shear connectors that facilitate accelerated construction and deconstruction. A lockbolt demountable shear connector (LBDSC) was recently proposed. While the LBDSC has been evaluated using horizontal and vertical (standard) push-out tests, it is essential to further assess the disassembly mechanism and the positive flexural performance of prefabricated demountable composite beams (PDCBs) under both serviceability and ultimate limit states. Two full-scale test specimens of PDCBs with LBDSC were designed with partial shear connections and assessed using a three or four-point load beam setup under both cyclic and static monotonic loading conditions.
... Show MoreIt is suitable to use precast steel-concrete composite beams to quickly assemble a bridge or a building, particularly in isolated regions where cast-in-situ concrete is not a practical option. If steel-concrete composite beams are designed to allow demountability, they can also be extremely useful in the aftermath of natural disasters, such as earthquakes or flooding, to replace damaged infrastructure. Furthermore, rapid replacement of slabs is extremely beneficial in case of severe deterioration due to long-term stressors such as fatigue or corrosion. The only way to rapidly assemble and disassemble a steel-concrete composite structure is to use demountable shear connectors to connect/disconnect the steel beams to/from the concrete slab. I
... Show Moreوفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنف
... Show More