In this study, the physical, and mechanical properties of low-cost and biocomposites were evaluated. The walnut shell and date palm frond fibers were thermally treated in an oven at a temperature of 70°C and then chemically treated with NaOH and distilled water solution, after these treatments, the biocomposite materials will be thermally treated again at 50°C. This procedure was performed for three types of biocomposite; Walnut shell Fiber Reinforced Polymer (WFRP), Date palm Fiber Reinforced Polymer (DFRP), and Hybrid Fiber Reinforced Polymer (HFRP), whereas the biocomposite sheets consisting of 30% biofibers and 70% unsaturated polyester, the mechanical test specimens were cut by a CNC machine according to ASTM standards. The effect of fiber type was analyzed in terms of the mechanical properties (tensile, compression, and density). The tensile test results showed that the DFRP composite had the best results comparable with WFRP and HFRP, the ultimate tensile strength, was increased by 28.6%, and 12.5% respectively, furthermore, the compression strength of the WFRP composite was increased by 21.5%, and 10.3% compared with DFRP and HFRP composites respectively. The WFRP composite revealed the lowest value of density 4.60 g/cm3 rather than DFRP and HFRP composites.
Realizing the full potential of wireless sensor networks (WSNs) highlights many design issues, particularly the trade-offs concerning multiple conflicting improvements such as maximizing the route overlapping for efficient data aggregation and minimizing the total link cost. While the issues of data aggregation routing protocols and link cost function in a WSNs have been comprehensively considered in the literature, a trade-off improvement between these two has not yet been addressed. In this paper, a comprehensive weight for trade-off between different objectives has been employed, the so-called weighted data aggregation routing strategy (WDARS) which aims to maximize the overlap routes for efficient data aggregation and link cost
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m
... Show MoreThe nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the de
... Show MoreThis paper examines the impact of flexural strengthening on the percentage of damaged strands in internally unbonded tendons in partially prestressed concrete beams (0, 14.28%, and 28.57%) and the recovering conditions using CFRP composite longitudinal laminates at the soffit, and end anchorage U-wrap sheets to restore the original flexural capacity and mitigate the delamination of the soffit of longitudinal Carbon Fiber Reinforced Polymer (CFRP) laminates. The composition of the laminates and anchors affected the stress of the CFRP, the failure mode, and thus the behavior of the beam. The experimental results revealed that the usage of CFRP laminates has a considerable impact on strand strain, particularly when anchors are employed
... Show MoreThe optical transmission and UV-VIS absorption spectra have been recorded in the wavelength range (200-1100m) for different composition of polyaniline and polyvinyl Alcohol(PVA ) blends thin films. Polyaniline was prepared in acidic medium to enhancement the solubility and processibility, The optical energy gap (Eopt) refractive index and optical dielectric constant real and imaginary part have been evaluated. The effects of doping percentage of prepared polyaniline on these parameters was discussed and the non –linear behavior for all these parameters was investigated.
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreNitinol (NiTi) is used in many medical applications, including hard tissue replacements, because of its suitable characteristics, including a close elastic modulus to that of bones. Due to the great importance of the mechanical properties of this material in tissue replacements, this work aims to study the hysteresis response in an attempt to explore the ability of the material to remember its previous mechanical state in addition to its ability to withstand stress and to obtain the optimal dimensions and specifications for the manufacturer of NiTi actuators. Stress-strain examination is done in a computational way using a mutable Lagoudas MATLAB code for various coil radii, environment temperatures, and coil lengths. The computational m
... Show More