Preferred Language
Articles
/
VxfENY8BVTCNdQwCsmKB
Differential Evolution algorithm for linear frequency modulation radar signal denoising
...Show More Authors

Signal denoising is directly related to sample estimation of received signals, either by estimating the equation parameters for the target reflections or the surrounding noise and clutter accompanying the data of interest. Radar signals recorded using analogue or digital devices are not immune to noise. Random or white noise with no coherency is mainly produced in the form of random electrons, and caused by heat, environment, and stray circuitry loses. These factors influence the output signal voltage, thus creating detectable noise. Differential Evolution (DE) is an effectual, competent, and robust optimisation method used to solve different problems in the engineering and scientific domains, such as in signal processing. This paper looks at the feasibility of using the differential evolution algorithm to estimate the linear frequency modulation received signal parameters for radar signal denoising. The results gave high target recognition and showed feasibility to denoise received signals.

Scopus Crossref
View Publication
Publication Date
Wed Jan 01 2014
Journal Name
Siam Journal On Control And Optimization
A Duality Approach for Solving Control-Constrained Linear-Quadratic Optimal Control Problems
...Show More Authors

View Publication
Scopus (24)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Jan 16 2018
Journal Name
Design And Manufacture An Automatic Knife For Date Palm Tree Frond Cutting Operates By Frequency Theory Cutting‏ Mra Abdulrazak A. Jasim‏
Design and manufacture an automatic knife for date palm tree frond cutting Operates by frequency theory Cutting‏
...Show More Authors

Publication Date
Tue Jan 01 2013
Journal Name
Brain Research Bulletin
A note on the probability distribution function of the surface electromyogram signal
...Show More Authors

View Publication
Scopus (81)
Crossref (85)
Scopus Clarivate Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Ieee Transactions On Artificial Intelligence
Recursive Multi-Signal Temporal Fusions With Attention Mechanism Improves EMG Feature Extraction
...Show More Authors

View Publication
Scopus (30)
Crossref (27)
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Iet Signal Processing
Signal compression and enhancement using a new orthogonal‐polynomial‐based discrete transform
...Show More Authors

View Publication
Scopus (39)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2016
Journal Name
Al–bahith Al–a'alami
From Structure to the Signal (Text and Discourse in the Semiotic Analysis)
...Show More Authors

Care and attention to the structure in the sixties of the last century replaced the mark, and if the structure of Ms. pampered in research and studies, it has become the mark is also a spoiled lady .. But the relationship between the structure and the mark was not a break and break, but the relationship of integration, His themes are structural analysis, and these are intellectual themes that can not be surpassed in contemporary research, especially since semiotics have emerged from the linguistic inflection.

We have tried to distinguish between text and speech, which is a daunting task, as it seems that whenever the difference between them is clear and clear, we come back to wonder whether the text is the same discourse, and is

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Iraqi Journal Of Science
The Effect of Metallicity on the AGB Stars Evolution by Using Synthetic Model
...Show More Authors

Abstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A

... Show More
Preview PDF
Publication Date
Thu Nov 01 2012
Journal Name
Iraqi Journal Of Science
THE EVOLUTION OF PLANETARY NEBULAE(PN) AND FADING TIME ACCORDING TO SYNTHETIC MODEL
...Show More Authors

Abstract Planetary nebulae (PN) represents the short phase in the life of stars with masses (0.89-7) M☉. Several physical processes taking place during the red giant phase of low and intermediates-mass stars. These processes include :1) The regular (early ) wind and the envelope ejection, 2) The thermal pulses during Asymptotic Giant Branch (AGB ) phase. In this paper it is briefly discussed how such processes affect the mass range of Planetary Nebulae(PN) nuclei(core) and their evolution, and the PN life time, and fading time for the masses which adopted. The Synthetic model is adopted. The envelope mass of star (MeN ) and transition time (ttr) calculated respectively for the parameter (MeR =1.5,2, 3×10-3 M☉). Another time scale is o

... Show More
Preview PDF
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES
...Show More Authors

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

View Publication Preview PDF
Crossref