Preferred Language
Articles
/
Vxf4kI8BVTCNdQwCcXuR
An Optimal Method for Supply Chain Logistics Management Based on Neural Network

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Apr 03 2023
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
An Integrated Grasshopper Optimization Algorithm with Artificial Neural Network for Trusted Nodes Classification Problem

Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica

... Show More
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Advance Science And Technology
MR Images Classification of Alzheimer's Disease Based on Deep Belief Network Method

Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the

... Show More
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Engineering
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia applications. To

... Show More
View Publication
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Priority Based Transmission Rate Control with Neural Network Controller in WMSNs

Wireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia appli

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Artificial Neural Network for TIFF Image Compression

The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256)  in our research, compressed them by using MLP for each

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
A Linear Programming Method Based Optimal Power Flow Problem for Iraqi Extra High Voltage Grid (EHV)

The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Simulation and assessment of water supply network for specified districts at Najaf Governorate
Abstract<p>This study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand </p> ... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Boltzmann Machine Neural Network for Arabic Speech Recognition

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with 

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Journal Of Economics And Administrative Sciences
Using Artificial Neural Network Models For Forecasting & Comparison

The Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF