Preferred Language
Articles
/
VxelWJMBVTCNdQwCUtHe
GPT-4 versus Bard and Bing: LLMs for Fake Image Detection
...Show More Authors

The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital media. Our investigation rigorously assesses the capabilities of these advanced LLMs in identifying and differentiating manipulated imagery. We explore how these models process visual data, their effectiveness in recognizing subtle alterations, and their potential in safeguarding against misleading representations. The implications of our findings are far-reaching, impacting areas such as security, media integrity, and the trustworthiness of information in digital platforms. Moreover, the study sheds light on the limitations and strengths of current LLMs in handling complex tasks like image verification, thereby contributing valuable insights to the ongoing discourse on AI ethics and digital media reliability.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 04 2012
Journal Name
Baghdad Science Journal
Detection of Some Active compounds and Vitamins Increasing in Aloe vera Callus culture
...Show More Authors

This study was aimed to use plant tissue culture technique to induce callus formation of Aloe vera on MS. Medium supplied with 10 mg/l NAA and 5 mg/l BA that exhibit the best results even with subculturing. As the method of [1] 1g. dru weight of callus induced from A. vera crown and in vivo crown were extracted then injected in HPLC using the standards of Ascorbic acid (vit. C), Salysilic acid and Nicotenic acid (vit. B5) to compare with the plant extracts. Results showed high potential of increasing some secondary products using the crown callus culture of A. vera as compared with in vivo crown, Ascorbic acid was 1.829 ?g/l in in vivo crown and increased to 3.905 ?g/l crown callus culture . Salysilic acid raised from 3.54 ?g/l in in vivo c

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Facial deepfake performance evaluation based on three detection tools: MTCNN, Dlib, and MediaPipe
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Sat Mar 25 2017
Journal Name
Biomedical And Pharmacology Journal
Detection of Cytomegalovirus and Epstein Barr Virus in Placental Tissues of Aborted Women
...Show More Authors

Introduction The abortions reasons in several circumstances yet are mysterious, nevertheless the bacterial toxicities signify a main reason in abortion, where germs seems to be the utmost elaborate pathogens (Khameneh et.al., 2014) and (Oliver and Overton ,2014). Between numerous germs, Humano

View Publication
Scopus (3)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Computer Networks, Big Data And Iot
A Comprehensive Study of Various DC Faults and Detection Methods in Photovoltaic System
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Mon Jan 29 2024
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn 2789-3219 )
Role of Ultrasound in Antenatal Detection of Echogenic Amniotic Fluid and Pregnancy Outcome
...Show More Authors

Background: Ultrasound is a valuable tool for evaluating fetal problems throughout pregnancy. Amniotic fluid anomalies have been associated with unfavorable maternal, fetal, and obstetrical outcomes. Objective: To determine the effect of echogenic amniotic fluid during term pregnancy on the presence of meconium stain liquor and pregnancy outcome. Methods: A cross-sectional study was conducted on 1080 term pregnant women who visited Al-Elwiya Maternity Teaching Hospital from May 1st, 2021, to May 1st, 2023. Ultrasound was used to analyze echogenic amniotic fluid and turbid liquor. The liquor state was tested either after an artificial membrane rupture in the vaginal delivery trial or during a cesarean section. Results: Echogenic amni

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Aug 12 2022
Journal Name
Future Internet
Improved DDoS Detection Utilizing Deep Neural Networks and Feedforward Neural Networks as Autoencoder
...Show More Authors

Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr

... Show More
View Publication Preview PDF
Scopus (39)
Crossref (32)
Scopus Clarivate Crossref