The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital media. Our investigation rigorously assesses the capabilities of these advanced LLMs in identifying and differentiating manipulated imagery. We explore how these models process visual data, their effectiveness in recognizing subtle alterations, and their potential in safeguarding against misleading representations. The implications of our findings are far-reaching, impacting areas such as security, media integrity, and the trustworthiness of information in digital platforms. Moreover, the study sheds light on the limitations and strengths of current LLMs in handling complex tasks like image verification, thereby contributing valuable insights to the ongoing discourse on AI ethics and digital media reliability.
Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval ( are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi
... Show MoreBiological image edge detection preserving the important structural properties in an image. Detecting accurate edges are very important for analyzing the basic properties associated with a biological image. Gradient operator plays very important role in edge detection. In this paper the images had been using are color biological images taken from microbiology laboratory at the biological department college of science Al-MustansiriyhUniversity and the effect of gradient operation have applied on around 10 different biological color images but view only two. In our proposed approach comparative of various gradient of biological image include (gradient of image, gradient of image using first order derivative edge detection (Soble,Prewitt,Ro
... Show MoreFG Mohammed, HM Al-Dabbas, Iraqi journal of science, 2018 - Cited by 6
Cadmium has been known to be harmful to human healthy , manily Via contaminated drinking water , food supplies , tobacco and industrial pollutant . The aim of this study was to determine the toxicity of new Cadmium (II) complex ( Bis[ 5- ( P- nitrophenyl ) – ? 4 – Phenyl- 1,2,4- triazole -3- dithiocarbamatohydrazide] cadmium (II) Hydra ( 0.5) and compare it with anticancer drug cyclophosphamide ( CP) in female albino mice . This complex causes to several alterations in Enzymatic activity of Glutamate Pyruvate Transaminase (GPT) and Alkaline Phosphatase (ALP ) in three organs after the treatment of mice with different doses of a new cadmium (II) complex ( 0.09 / 0.25ml , 0.18/ 0.5ml and 0.25mg /0.7 ml /30 gm of mous
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreBackground: Techniques of Inguinal hernia repair have seen an evolution from the pure tissue repair to the prosthetic repair and in the recent years past to laparoscopic repair. High recurrence rates using fascia for the hernia repair or the use of sutures under tension prompted the development of polypropylene mesh to reinforce the posterior wall of the inguinal canal.The aim of this study is to compare the post operative results of Lichtenstein mesh technique with Dar ning repair.<br />Patients and methods:-A prospective study of "100" patients with inguinal hernia were conducted to evaluate two methods, of open repair of inguinal hernia Lichtenstein mesh technique with Traditional non-mesh technique (modified Bassini or Darning)
... Show MoreIn recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlat
... Show MoreA new method presented in this work to detect the existence of hidden
data as a secret message in images. This method must be applyied only on images which have the same visible properties (similar in perspective) where the human eyes cannot detect the difference between them.
This method is based on Image Quality Metrics (Structural Contents
Metric), which means the comparison between the original images and stego images, and determines the size ofthe hidden data. We applied the method to four different images, we detect by this method the hidden data and find exactly the same size of the hidden data.