The removal of congo red (CR) is a critical issue in contemporary textile industry wastewater treatment. The current study introduces a combined electrochemical process of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of this dye. Moreover, it discusses the formation of a triple composite of Co, Mn, and Ni oxides by depositing fixed salt ratios (1:1:1) of these oxides in an electrolysis cell at a constant current density of 25 mA/cm2. The deposition ended within 3 hours at room temperature. X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive X-ray (EDX) characterized the structural and surface morphology of the multi-oxide sediment. Marvelously, the deposition has simultaneously occurred on both anodic and cathodic graphite electrodes. These electrodes besides aluminum (Al) are employed as anodes in the EC-EO system, and the results were optimized by response surface methodology (RSM). The optimum operating conditions were a current density of 6 mA/cm2, pH = 7, and NaCl of 0.26 g/L. The results showed that the combined system eliminated more than 99.91% of the congo red dye with a removal of chemical oxygen demand (COD) of around 97% with 1.64 kWh/kg of dye of the consumed energy. At low current density, the current delivered for the composite anode was more than for the Al anode with the same surface area. On top of this superiority, the EC-EO scenario is a practical hybrid process to remove CR in an environmentally friendly pathway.
Coumarin derivatives have shown different biological activities, such as antifungal, antibacterial antiinflammatory, and antioxidant activities, besides antibiotic resistance modulating effects, and anti-HIV, hepatoprotective, and antitumor effect. So, new coumarin derivatives (hydrazones and an amide) were synthesized through multisteps reactions. All the synthesized target compounds were characterized by FT-IR spectroscopy, 1HNMR analysis. The compounds then evaluated for their anti-bacterial activity by means of well-diffusion method against two gram-positive bacteria (Staphylococcus aureus, Streptococcus pneumoniae) and two gram-negative bacteria (E.coli and Pseudomonas aeruginosa). The highest activity was demonstr
... Show MoreInternet of Things (IoT) is one of the newest matters in both industry and academia of the communication engineering world. On the other hand, wireless mesh networks, a network topology that has been debate for decades that haven’t been put into use in great scale, can make a transformation when it arises to the network in the IoT world nowadays. A Mesh IoT network is a local network architecture in which linked devices cooperate and route data using a specified protocol. Typically, IoT devices exchange sensor data by connecting to an IoT gateway. However, there are certain limitations if it involves to large number of sensors and the data that should be received is difficult to analyze. The aim of the work here is to implement a self-
... Show MoreThe aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main
... Show MoreA polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(Ts=RT-250)oC on glass substrates of the thickness(0.8?m). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (Ts=RT-150) oC, while at higher substrate temperature(Ts=150-250) oC the structure is single crystal. The optical properties as a function of Ts were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65
... Show MoreBacterial contamination of AL-Habania and AL-Tharthar reservoirs were studied during the period from February 2001 to January 2002, samples were collected from four stations in AL-Habania reservoir (AL-Warrar, AL-Theban regulator, middle of the reservoir and the fourth was towards AL-Razzaza reservoir) and from two stations at AL-Tharthar reservoir (Ein AL-Hilwa and the middle of the reservoir). Coliform bacteria, faecal Coliforms, Streptococci, faecal Streptococci and total count of bacteria were used as parameters of bacterial contamination in waters of both reservoirs through calculating the most probable number. Highest count of Coliform bacteria (15000 cell/100ml) was recorded at Ein AL-Hilwa and lowest count at AL-Theban regulator
... Show MoreIn this paper, a single-phase boost type ac-dc converter with power factor correction (PFC) technique is designed and implemented. A current mode control at a constant switching frequency is used as a control strategy for PFC converter. The PFC converter is a single-stage singleswitch boost converter that uses a current shaping technique to reshape the non-sinusoidal input current drawn by the bulky capacitor in the conventional rectifier. This technique should provide an input current with almost free-harmonics, comply with the IEC61000-3-2 limits, and a system operates with near unity power factor. The other function of the boost converter that should be
accomplished is to provide a regulated DC output voltage. The complete designed
Background: The integration of modern computer-aided design and manufacturing technologies in diagnosis, treatment planning, and appliance construction is changing the way in which orthodontic treatment is provided to patients. The aim of this study is to assess the validity of digital and rapid prototyped orthodontic study models as compared to their original stone models. Materials and methods: The sample of the study consisted of 30 study models with well-aligned, Angle Class I malocclusion. The models were digitized with desktop scanner to create digital models. Digital files were then converted to plastic physical casts using prototyping machine, which utilizes the fused deposition modeling technology. Polylactic acid polymer was chose
... Show MoreBackground Anorectal carcinoma includes the anal margin, the anal canal, and the lower rectum. The incidences of anal tumors represent 1.4 % of all gastrointestinal tumors.
Patients and methods Our study is retrospective and was conducted at Baghdad Medical City. Patient’s data were collected from the medical records through a predesigned sheet that included the following information: demographic data, medical history, past-history, presenting symptoms, pathological data, and treatment details.
Results The median age was 49 years. As regard tumor extension, 85.71 % of patients had anal disease, while anorectal cancer was encount
Five heavy metals, namely Cd, Cu, Fe, Mn, and Pb in the surface water and through the water column were studied at 10 selected stations in the Razzazah lake and Karbala drainage canal for the period between November 1990 to October 1991*. pH and total hardness were also measured. Lead was found to be the highest in concentration as overall average values, followed by an manganese, iron, copper then cadmium at the surface as well as along the water column. All the studied metals were below or close to the maximum allowed limits of Iraqi standards for inland water. The spatial and seasonal variations were discussed.
