Preferred Language
Articles
/
VxduMY4BVTCNdQwC0DyI
An artificial intelligence approach to predict infants’ health status at birth
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Mon May 06 2024
Journal Name
Journal Of Ecological Engineering
Using Machine Learning Algorithms to Predict the Sweetness of Bananas at Different Drying Times
...Show More Authors

The consumption of dried bananas has increased because they contain essential nutrients. In order to preserve bananas for a longer period, a drying process is carried out, which makes them a light snack that does not spoil quickly. On the other hand, machine learning algorithms can be used to predict the sweetness of dried bananas. The article aimed to study the effect of different drying times (6, 8, and 10 hours) using an air dryer on some physical and chemical characteristics of bananas, including CIE-L*a*b, water content, carbohydrates, and sweetness. Also predicting the sweetness of dried bananas based on the CIE-L*a*b ratios using machine learn- ing algorithms RF, SVM, LDA, KNN, and CART. The results showed that increasing the drying

... Show More
Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Pathology - Research And Practice
Artificial intelligence in cancer diagnosis: Opportunities and challenges
...Show More Authors

View Publication
Scopus (27)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Fri Oct 02 2009
Journal Name
Noise And Health
Expert system to predict effects of noise pollution on operators of power plant using neuro-fuzzy approach
...Show More Authors

Ration power plants, to generate power, have become common worldwide. One such one is the steam power plant. In such plants, various moving parts of heavy machines generate a lot of noise. Operators are subjected to high levels of noise. High noise level exposure leads to psychological as well physiological problems; different kinds of ill effects. It results in deteriorated work efficiency, although the exact nature of work performance is still unknown. To predict work efficiency deterioration, neuro-fuzzy tools are being used in research. It has been established that a neuro-fuzzy computing system helps in identification and analysis of fuzzy models. The last decade has seen substantial growth in development of various neuro-fuzzy systems

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modifying an Equation to Predict the Asphaltene Deposition in the Buzurgan Oil Field
...Show More Authors

Buzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal instabi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Modifying an Equation to Predict the Asphaltene Deposition in the Buzurgan Oil Field
...Show More Authors

Buzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal in

... Show More
Crossref
Publication Date
Sun Dec 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
Oxidative status among a group of pregnant women in relation to gingival health condition
...Show More Authors

Background: pregnancy as a systemic condition causes changes in the functioning of human body as a whole and specifically in the oral cavity and it also is considered as a stressful condition. These changes may favor the increase of oxidative stress. Aim: The aim of this study was to estimate the level of marker of oxidative stress (malondialdehyde) and antioxidant (uric acid) in saliva of pregnant compared to non-pregnant women and to assess the gingival health condition in both groups. Additionally, unstimulated salivary flow rate was determined in both groups. Subjects, materials and methods: The study group consisted of sixty pregnant women, they were divided into three equal groups according to trimester (20 pregnant women for each

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq
...Show More Authors

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Artificial Neural Network and Box- Jenkins Models to Predict the Number of Patients with Hypertension in Kalar
...Show More Authors

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Je

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 06 2018
Journal Name
Iraqi National Journal Of Nursing Specialties
Factors Affecting Birth Space Interval of Women Who Are Attending Primary Health Care Centers
...Show More Authors

Objective: The aim of this study is to determine the factors affecting birth space interval in a sample of women.
Methodology: A cross-sectional study conducted in primary health centers in Al-Tahade and Al- Shak Omar in
Baghdad city. Data were collected by direct interview using questionnaire especially prepared for the study.
Sample size was (415) women in age group (20-40) years who were chosen randomly.
Results: Analysis of data shows highest rate of women (31.8%) had a birth space interval of (8-12) months
followed by (26.7%) had a birth space interval of (19-24) months, (20.2%) had a birth space interval of (>24)
months and (16.1%) had a birth space interval of (13-18) months respectively, while lower rate of w

... Show More
View Publication Preview PDF