Zinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift, which means smaller sizes of prepared nanoparticles, correlated with the decrease in laser energy. The blue shift in the absorption edge refers to the quantum confinement property for the produced nanoparticles. In addition, Fourier Transform Infrared Spectroscopy (FTIR) analysis was utilized to confirm zinc oxide nanoparticles formation represented by the absorption values at 435–445 cm−1. The shape and morphology of ZnO nanoparticles were characterized with scanning electron microscope (SEM).
We observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
The propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.
The solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreAim: To evaluate the commercial pure titanium disks that structuring by laser in two design (dot and groove) each one with three different laser scan (5, 15 and 25) and comparing with titanium surface that not subjected to any surface structuring (control) through measuring the wettability test and surface roughness test. Materials and methods: Structuring on the surface of the commercial pure titanium (CP Ti) disks was performed via using fiber laser CNC machine in two design (dot and groove) in three different laser scans (5, 15 and 25), then the structuring disks analyzed with the control group by atomic force microscope and water contact angle test. Results: The results of this study showed that the surface roughness and the wettability
... Show MoreThis paper describes a research effort that aims of developing solar models for housing suitable for the Arabian region since the Arabian Peninsula is excelled with very high levels of solar radiation.
The current paper is focused on achieving energy efficiency through utilizing solar energy and conserving energy. This task can be accomplished by implementation the major elements related to energy efficiency in housing design , such as embark on an optimum photovoltaic system orientation to maximize seize solar energy and produce solar electricity. All the precautions were taken to minimizing the consumption of solar energy for providing the suitable air-condition to the inhibitor of the solar house in addition to use of energy effici
In this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indi
... Show MoreIn this work, the photocatalytic degradation of indigo carmine (IC) using zinc oxide suspension was studied. The effect of influential parameters such as initial indigo carmine concentration and catalyst loading were studied with the effect of Vis irradiation in the presence of reused ZnO was also investigated. The increased in initial dye concentration decreased the photodegradation and the increased catalyst loading increased the degradation percentage and the reused-ZnO exhibits lower photocatalytic activity than the ZnO catalyst. It has been found that the photocatalytic degradation of indigo carmine obeyed the pseudo-first-order kinetic reaction in presence of zinc oxide. This was found from plotting the relationship between ln
... Show MoreThe present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show MoreDue to the importance of Laser usage in the field of skin diseases Like removing. the cicatrix (acne causes). skin lines, cone spots, two laser systems have underwent a study and evaluation for their use in treatingthe skin diseases.
The research deals with desigrrating an optical system .The system is for concentrating the laser beam C02 with a wave length of
10.6 micrometer Descriptions of 1he system and value of the
perfonnance
... Show MoreOily carwash wastewater is a high organic and chemical wastewater. This paper targeted to investigate a treatment to decrease the water consumption and contaminants in car-washing stations. Electrocoagulation combined with ultrasonic energy (Sono-Electrocoagulation) was suggested so that the carwash wastewater is treated to be reused. The effect of both the voltage and time of treatment on the removal of COD, turbidity, conductivity, and total dissolved solids (TDS) were studied at constant initial pH 7 and electrode distance 2 cm. The results showed the best results of removal COD, turbidity, TDS, and reduce electrical conductivity is when the voltage was 30 V and a treatment time of 90 minutes.
<
... Show More