In this work, the possibility of a multiwavelength mode-locked fiber laser generation based on Four-Wave Mixing (FWM) induced by Fe2O3-SiO2 nanocomposite material is investigated for the first time. A multiwavelength mode-locked pulses fiber laser are generated from Ytterbium–doped fiber laser (YDFL) due to the combined action of high nonlinear absorption and high refractive coefficients of Fe2O3-SiO2 nanocomposite incorporated inside YDFL ring cavity. Up to more than 20 lasing lines in the 1040–1070 nm band with an equally lines separation of ~0.6 nm have been observed by just simple variation of passive modulation of the state of the polarization and the pump power altogether. Moreover, a passively mode-locked operation of YDFL laser has been realized with repetition rate of 18.75 MHz and pulse width of 10 ps. The proposed laser offers excellent long-standing stability with the average amount of optical signal/noise ratio of more than 41 dBm. Our study may pave a novel technique to generate multiwavelength lasing from fiber laser with the assistance by nanocomposite disordered media at low threshold pumping.
The triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
This article includes the preparation of luminescence materials from rare earth (Eu ) ion doping Yttrium Oxide (Y2O3) 70% and SiO2 25% and study the characteristics of phosphors for ultraviolet to visible conversion. The phosphor materials have been synthesized by two steps: Preparing the powder by solid state method using Y2O3, SiO2 and Eu2O3 with doping materials concentration (70%, 25% and 5%) respectively and different calcination temperature (1000, 1200 and 1400 oC).
The second step is to prepare the colloid solution by dispersing the produced powder in a polyvinyl alcohol solution (4%) .
Powde
... Show MorePoly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have differ
... Show MoreMode filtering technique is one of the most desired techniques in optical fiber communication systems, especially for multiple input multiple output (MIMO) coherent optical communications that have mode-dependent losses in communication channels. In this work, a special type of optical fiber sensing head was used, where it utilizes DCF13 that is made by Thorlabs and has two numerical apertures (NA’s). One is for core and 1st cladding region, while the 2nd relates the 1st cladding to the 2nd cladding. Etching process using 40 % hydro-fluoric (HF) acid was performed on the DCF13 with variable time in minutes. Investigation of the correlation between the degree of etching and the re
No-fine concrete (NFC) is cellular concrete and it’s light weight concrete produced with the exclusion of sand from the concrete. This study includes the mechanical properties of lightweight reinforced by steel fiber, containing different proportions of steel fiber. This study was done using number of tests. These tests were density, compressive strength, flexural strength and absorption. These tests of the molds at different curing time. The results of tests that implication of fiber to No. fine concrete did not affect significantly on the compressive strength, While the flexural strength were gets better. Results explained that, the flexural strength of (1%) fiber No- fine concrete molds are four times that of the reference mold
... Show More