Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.
In this study, several ionanofluids (INFs) were prepared in order to study their efficiency as a cooling medium at 25 °C. The two-step technique is used to prepare ionanofluid (INF) by dispersing multi-walled carbon nanotubes (MWCNTs) in two concentrations 0.5 and 1 wt% in ionic liquid (IL). Two types of ionic liquids (ILs) were used: hydrophilic represented by 1-ethyl-3-methylimidazolium tetrafluoroborate [EMIM][BF4] and hydrophobic represented by 1-hexyl-3-methylimidazolium hexafluorophosphate [HMIM][PF6]. The thermophysical properties of the prepared INFs including thermal conductivity (TC), density and viscosity were measured experimental
The local resolving neighborhood of a pair of vertices for and is if there is a vertex in a connected graph where the distance from to is not equal to the distance from to , or defined by . A local resolving function of is a real valued function such that for and . The local fractional metric dimension of graph denoted by , defined by In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph and graph , where graph is a connected graphs and graph is a complate graph &
... Show MoreThe metric dimension and dominating set are the concept of graph theory that can be developed in terms of the concept and its application in graph operations. One of some concepts in graph theory that combine these two concepts is resolving dominating number. In this paper, the definition of resolving dominating number is presented again as the term dominant metric dimension. The aims of this paper are to find the dominant metric dimension of some special graphs and corona product graphs of the connected graphs and , for some special graphs . The dominant metric dimension of is denoted by and the dominant metric dimension of corona product graph G and H is denoted by .
The notion of a Tˉ-pure sub-act and so Tˉ-pure sub-act relative to sub-act are introduced. Some properties of these concepts have been studied.
We report the detail characterizations and
Al2O3 and Al2O3–Al composite coatings were deposited on steel specimens using Oxy-acetylene gas thermal spray gun. Alumina was mixed with Aluminum in six groups of concentrations (0, 5, 10,12,15 and 20% ) Al2O3, Specimens were tested for corrosion using Potentiodynamic polarization technique. Further tests were conducted for the effect of temperature on polarization curve and the hardness tests for the coated specimens. At first, Modelling was carried out using MINITAB-19, least square method, as a 2nd degree nonlinear model, bad results were achieved because of the high nonlinearity. Better result w
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.