Background: Nanotechnology has emerged as a pivotal domain in material science research with extensive applications across various sectors including biotechnology and medicine. Nanoparticles offer unique properties facilitating advancements in nanobiotechnology, particularly in nanomedicine, to combat bacterial infections and antibiotic resistance. This study aimed to determine the application of nanoparticles, specifically nano-TiO2, in treating plasmid-mediated antibiotic resistance in both Gram-negative and Gram-positive bacteria. Method: We evaluated antibiotic and nanomaterial sensitivity through disc diffusion and broth microdilution assays. Plasmid curing experiments were conducted using varying concentrations of nano-TiO2 and SDS as curing agents, followed by plasmid isolation and DNA extraction. The efficacy of nano-TiO2 in plasmid curing and DNA extraction was assessed, alongside the impact on bacterial growth and antibiotic resistance. Results: Results showed successful plasmid elimination with nano-TiO2 treatment, evidenced by the loss of plasmid DNA bands. Additionally, nano-TiO2 substantially enhanced DNA extraction efficiency and quality. The study indicated nano-TiO2's potential in combating antibiotic resistance by targeting plasmids, thereby presenting a novel approach in molecular biology techniques. Conclusion: In conclusion, this study underscores the promising role of nanoparticles in addressing bacterial infections and combating antibiotic resistance. Nano-TiO2 emerges as a valuable tool in DNA purification and plasmid curing, offering new avenues in molecular biology and antibiotic resistance research. However, further investigations are warranted to elucidate the broader implications of nanoparticles across diverse bacterial species and strains. These findings represent a significant step towards harnessing the potential of nanotechnology in combating antimicrobial resistance and advancing healthcare paradigms.
The objective of this article is to study the impact of environmental pollution on air, water, and soil quality with a focus on the role of environmental bacteria in bioremediation of pollutants. The research also addresses the ability of some strains of bacteria to remove heavy metals and petroleum hydrocarbons and degrade toxic substances, resulting in improved environmental quality. Outcomes: Empirical studies reveal that environmental pollution leads to significant health and environmental problems, such as a rise in respiratory disease as a result of air pollution, water pollution that affects aquatic life, and soil pollution that decreases crop output. Other bacterial strains such as Pseudomonas, Bacillus, and Streptomyces have also b
... Show MoreThe approach of green synthesis of bio-sorbent has become simple alternatives to chemical synths as they use for example plant extracts, plus green synthesis outperforms chemical methods because it is environmentally friendly besides has wide applications in environmental remediation. This paper investigates the removal of ciprofloxacin (CIP) using green tea nano zero-valent iron (GT-NZVI) in an aqueous solution. The synthesized GT-NZVI was categorized using SEM, AFM, BET, FTIR, and Zeta potentials techniques. The spherical nanoparticles were found to be nano zero-valent, with an average size of 85 nm and a surface area of 2.19m2/g. The results showed that the removal efficiency of ciprofloxacin depends on the initial pH (2.5-10),
... Show MoreBackground: Due to the complicated and time-consuming physiological procedure of bone healing, certain graft materials have been frequently used to enhance the reconstruction of the normal bone architecture. However, owing to the limitations of these graft materials, some pharmaceutical alternatives are considered instead. Chitosan is a biopolymer with many distinguishing characteristics that make it one of the best materials to be used as a drug delivery system for simvastatin. Simvastatin is a cholesterol lowering drug, and an influencer in bone formation process, because it stimulates osteoblasts differentiation, bone morphogenic protein 2, and vascular endothelial growth factor. Objectives: histological, histochemical and histomorp
... Show More- The sandy soil with high gypsum content (usually referred to as gypseous soil) covers vast area in south, east, middle and west regions of Iraq, such soil possess a type of cohesive forces when attached with optimum amount of water, then compacted and allowed to cure, but losses its strength when flooded with water again. Much work on earth reinforcement was published which concentrate on the gain in bearing capacity in the reinforced layer using different types of cohesive or cohesion less soil and various types of reinforcement such as plastic, metal, grids, and synthetic textile. Little attention was paid to there enforce gypseous soil. The objective of this work is to study the interaction between such soil and reinforcement strips
... Show MoreLaser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is
... Show MoreThe detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreObjective: To evaluate the antibacterial effect of mastic gum against the most common aerobic oral bacteria and
emphasized on oral streptococci.
Methodology: In this study 10 persons (males and females of 18-60 years old) were randomly assigned to chew
mastic gum (1.5 gm for 45 minutes). Mouth washes were collected before and after gum chewing .The two mouth
washes were diluted (10-1 – 10-6) and cultivated aerobically for 24 hours at 37C0 on BHI agar for total bacterial
count and on MSF agar for counting the oral streptococci.
Results: The results showed that the total bacterial count for staphylococci, Neisseria and oral streptococci on BHI
agar and MSF agar for oral streptococci after mastic chewing were highly r