Acinetobacter baumannii ability to form biofilm makes it to be opportunistic pathogen causing of nosocomial infections and to be good survivor in adverse environmental conditions including medical devices and hospital environments. Six isolates of A. baumannii were isolated from drinking water and tested to investigate biofilm formation capacity on three different type of abiotic surface, also several factors were examined such as hydrophobicity, PH and temperature. All A. baumannii isolates displayed a positive biofilm on congored aga test CRA (pigmented colonies with black color) and Christensen's test (adhesive layer of stained material to the inside surface of the tube).The obtained data of microbial adhesion to hydrocarbons assay (MATH) assay revealed that the percentage of all isolates ranged between (45-75%). Results of recent study revealed that optical density OD values were consistently higher on catheter than on that of the polystyrene and glass at any of the PH and temperature Temperature 37°C and PH 4 have greatest positive effect on biofilm formation process than other values, Current study may help in additional understanding of A. baumannii ability to form biofilm on abiotic surface which may be is used in medical devices' manufacturer and role of this in spreading of this pathogen in hospital environment.
In this work, the possibility of utilizing osmosis phenomenon to produce energy as a type of the renewable energy using Thin Film Composite Ultra Low Pressure membrane TFC-ULP was studied. Where by forward osmosis water passes through the membrane toward the concentrated brine solution, this will lead to raise the head of the high brine solution. This developed static head may be used to produce energy. The aim of the present work is to study the static head developed and the flux on the high brine water solution side when using forward and reverse osmosis membranes for an initial concentration range from 35-300 g/l for each type of membrane used at room temperature and pressure conditions, and finally calculating the maximum possible po
... Show MorePhosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa
n the present work, a study is carried out to remove chromium (III) from
aqueous solution by: activated charcoal , attapulgite and date palm leaflet powder
(pinnae). The effect of various parameters such as contact time, and temperature has
been studied. The isotherm equilibrium data were well fitted by Freundlich and
Langmuir isotherm models. The adsorption capacity of chromium (III) that was
observed by activated charcoal , attapulgite and date palm leaflet powder (pinnae)
increased with the rise of temperature when the concentrations of Cr (III) were 600,
700 and 100mg/L respectively. The greatest adsorption capacity ofactivated
charcoal , attapulgite and date palm leaflet powder (pinnae) at 10°C was 7.51, 5.3
The physicochemical properties of drinking water in six different and limited sites on Euphrates River in Babylon governorate were studied during the year of2004.
Different parameters including (pH), alkalinity, turbidity, total hardness, magnesium, calcium, chloride and total dissolved solids in water were determined. It was found that the total hardness and the total dissolved solids were higher than those registered in the previous studies on Tigris
River sites.
Generally, the levels of these parameters were found to be within the
allowed ranges of human uses, except the total hard:1ess.
This study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in the study were
... Show MoreThis study aims to evaluate drinking water quality at the Al Wahda plant (WTP) in Baghdad city. A conventional water treatment plant with an average flow rate of 72.82 MLD. Water samples were taken from the influent and effluent of the treatment plant and analyzed for some physicochemical and biological parameters during the period from June to November 2020. The results of the evaluation indicate that treated water has almost the same characteristics as raw water; in other terms, the plant units do not remove pollutants as efficiently as intended. Based on this, the station appears to be nothing more than a series of water passage units. However, apart from Total dissolved solids, the mean values of all parameters in th
... Show MoreAn evaluation of pollution level has been done for drinking water which is used in Kirkuk city by heavy metals ( As,Cd,Cu,Fe,Mn,Ni,Zn,Cr,Pb) samples were collected during wet and dry of 2016-2017 from Kirkuk unified water supplied project (WTP) which is supply the city with drinking water, as well as from water of tanks type (GST2), and also from (tap water) (Zone3). The results showed the concentration of the (As,Cd,Cu,Fe,Mn,Ni,Zn,Cr,Pb)inppbfor (WTP)are (0.5,0.6,6.45,38,4.6,2.5,6537,0.58,1.4) (0.6,0.8,6.76,46,5.5,3.5,6675,1,2.4) for (GST) (0.5,0.63,6.46,52.3,4.4,3.6,6550,0.6,2.5) (0.60,0.7,6.78,63.7,6.7,3.7,6680,1.1,2.6) and for tap water are (0.53,0.65,7.00,60.2,4.4,3.65,7200,0.8,2.7) (0.60, 0.71, 7.10, 67.6, 6.8,3.75,7320,0.9,2.75) f
... Show More