In this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for pure PMMA. The AC and DC electrical conductivities of PMMA/HA/Gnp composites were enhanced with increasing the amount of Gnp and the estimated exponent (s) being between 1.25 and 1.3. The values of the real part (ɛ′) and imaginary part (ε′′) of the dielectric constant as well as electrical impedance depend on the Gnp ratio. The value of ɛ′ was reduced at the lower frequency (< 105 Hz) and became constant at the higher frequency which attributed to the relaxation time. The values of ε″ are small at low frequencies and increase with increased frequency due to the electronic polarization effects as well as to the dipoles not beginning to follow the field variation at higher frequencies. The increase in the dielectric loss, tan(δ), with an increase in Gnp content, to 0.5 wt%, due to the interfacial polarization mechanism occurred in the composite’s films corresponding to frequencies
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show MoreThe D.C. electrical properties of poly (ethylene oxide)/MgCl2 composites were investigated as a function of different MgCl2 filler concentrations (0, 5, 10, 15 and 20 wt.%) and different temperatures in the range (276–333)o K at three different polarizing fields. Resistivity:ï² and dc Conductivity: σ dc were measured, and the activation energy: Ea of the thermal rate-process of the electrical conduction was investigated. It was found that the current-voltage measurement results exhibited Ohmic resistance behavior, the composites exhibit negative temperature reliance of resistivity and enhancement in the D.C. electrical conductivity with both temperature and MgCl2 concentration. The determined activation energy was found to
... Show MoreIn this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases where
... Show MoreEnvironmental pollutions and resources depletion motivates scientific research to innovate technologies for sustainable productive systems. To develop gas sensing substance with optimized performance a perovskite compound of HoxFe1-x FeO3 (where x= 0, 0.01, 0.03 and 0.05) were prepared by standard solid state reaction technique. The crystal structure was studied by XRD, which confirmed the formation of polycrystalline orthorhombic structure with space group Pbnm type perovskite. The preferred crystal growth of the main peak was (211). The structural parameters were also calculated and it was found that the lattice constants and particle size increased with the Ho doping ratio. The electrical properties were studied using the Hall effect,
... Show MoreIn this work, Titanium oxide thin films doped with different concentration of CuO (0,5,10, 15,20) %wt were prepared by pulse laser deposition(PLD) technique on glass substrates at room temperature with constant deposition parameter such as : pulse (Nd:YAG), laser with λ=1064 nm, constant energy 800 mJ , repetition rate 6 Hz and No. of pulse (500). The structure , optical and electrical properties were studied . The results of X-ray diffraction( XRD) confirmed that the film grown by this technique have good crystalline tetragonal mixed anatase and rutile phase structure, The preferred orientation was along (110) direction for Rutile phase. The optical properties of the films were studied by UV-VIS spectrum in the range of (360-1100)
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreThe paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The paper reports the influence of annealing temperature under vacuum for one hour on the some structural and electrical properties of p-type CdTe thin films were grown at room temperature under high vacuum by using thermal evaporation technique with a mean thickness about 600nm. X-ray diffraction analysis confirms the formation of CdTe cubic phase at all annealing temperature. From investigated the electrical properties of CdTe thin films, the electrical conductivity, the majority carrier concentration, and the Hall mobility were found increase with increasing annealing temperatures.
The superconductor compound (YBa2Cu2.8Zn0.2O7+δ) is prepared by solid state reaction (SSR), Sol-gel (SG) and laser Pulse deposition (PLD) methods. We used the X-ray diffraction technique, which shows an orthorhombic crystalline system for all the samples, and increase in the high-phase (Y-123) and decrease in low-phase and vary in proportion according to the method of preparation with the emergence of some impurities. The behavior of the samples in terms of electrical resistance and critical temperature was investigated all samples showed superconducting behavior. The properties of the dielectric (real dielectric constant, imaginary dielectric constant, loss tangent, alternating electrical conductivity) were s
... Show More