A gamma T_ pure sub-module also the intersection property for gamma T_pure sub-modules have been studied in this action. Different descriptions and discuss some ownership, as Γ-module Z owns the TΓ_pure intersection property if and only if (J2 ΓK ∩ J^2 ΓF)=J^2 Γ(K ∩ F) for each Γ-ideal J and for all TΓ_pure K, and F in Z Q/P is TΓ_pure sub-module in Z/P, if P in Q.
A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
Let R be an individual left R-module of the same type as W, with W being a ring containing one. W’s submodules N and K should be referred to as N and K, respectively that K ⊆ N ⊆ W if N/K <<_J (D_j (W)+K)/K, Then K is known as the D J-coessential submodule of Nin W as K⊆_ (Rce) N. Coessential submodule is a generalization of this idea. These submodules have certain interesting qualities, such that if a certain condition is met, the homomorphic image of D J- N has a coessential submodule called D J-coessential submodule.
Through this paper R represent a commutative ring with identity and all R-modules are unitary left R-modules. In this work we consider a generalization of the class of essential submodules namely annihilator essential submodules. We study the relation between the submodule and his annihilator and we give some basic properties. Also we introduce the concept of annihilator uniform modules and annihilator maximal submodules.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreIn this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreLet
Let