Sulfamethoxazole (SMX) is the most significant antibiotic in the sulfonamide family. It was chosen as the representative of this category because of its widespread use. Starting with sulfamethoxazole, a new series of 2-Azetidinone (M1-M6) was synthesized, the structure of these new derivatives was confirmed using spectral methods, starting with the synthesis of Schiff’s bases by reflux of different aromatic benzaldehydes, separately, with Sulfamethoxazole in ethanol with few drops of acetic acid. The final compounds were obtained by ketene-imine synthesis of β-lactam using chloroacetyl chloride. The designed chemicals’ synthesis has been completed successfully. Physical parameters (melting points and Rf values), Fourier transform infrared (FT-IR) spectroscopy, and Proton nuclear magnetic resonance (1H-NMR) spectroscopy were used to establish the purity and characterization of these derivatives. When compared to standard antibiotics (Sulfamethoxazole, Ciprofloxacin, and Fluconazole), the preliminary antimicrobial activity tests on four different bacteria strains and one type of fungus demonstrated that the final compounds (M1-M6) have significant activity. Finally, the new derivatives (M3 and M5) are the most potent than the other ones and more active than the standard drugs.
The monomer phenyl acrylamide was synthesized by reacting acrylamide with chloro benzene in the presence of pyridine. Copolymer of phenyl acrylamide (PAM) with methyl methacrylate (MMA) was synthesized by free radical technique using dimethylsulfoxide (DMSO) as solvent and benzoyl peroxide (BPO) as initiator. The overall conversion was kept low (≤ 15% wt/wt) for all studies copolymers samples. The synthesized copolymers were characterized using fourier transform infrared spectroscopy (FT-IR), and their thermal properties were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The copolymers compositions were determined by elemental analysis. The monomer reactivity ratios have been calculated b
... Show MoreNew ligand of N-(pyrimidin-2-yl carbamothioyl)acetamide was synthesized and its complexes with (VO(II), Mn (II), Cu (II), Zn (II), Cd (II) and Hg (II) are formed with confirmation of their structures on the bases of spectroscopic analyses. Antimicrobial activity of new complexes are studied against Gram positive S. aureus and Gram negative E. coli, Proteus, Pseudomonas. The octahedral geometrical structures are proved depending on the outcomes from the preceding procedures
A new ligand [4-Methoxy -N-(pyrimidine-2-ylcarbamothioyl) benzamide] (MPB) was synthesized by reactioniofi(4-Methoxyibenzoyliisothiocyanate)withi(2-aminopyri-midine). The Ligand was characterized by elemental micro analysis (C.H.N.S),(FT-IR) (UV- Vis) and (1Hi,13CNMR)spectra. Some transition metals complexes of this ligand were prepared and characterized by (FT-IR, UV-Vis) spectra conductivity measurements magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all complexes was suggested to be [M(MPB)2Cl2] (M+2i=Cu, Mn, Co ,Ni ,Zn ,Cd and Hg),the proposed geometrical structure for all complexes was an octahedral.
In the present study, five derivatives have been designed to be synthesized as possible mutual prodrugs for 5-Fluorouracil (5-FU) and non steroidal anti-inflammatory drugs (NSAIDs) to selectively deliver the drugs into the cancer cells. The synthesis of the target compounds were accomplished following multistep reaction procedures, the chemical reaction followed up and the purity of the products were checked by TLC. The structure of the final compounds and their intermediates were confirmed by their melting points, infrared spectroscopy and elemental microanalysis, the hydrolysis of compound III was studied using HPLC technique. According to the results mentioned above, compounds (I−V) can be good candidates as possible mutual prod
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived from Erythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showed good activities against four pathogenic bacteria (Escherichia coli ,Klebsiellapneumonae, Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer. The
... Show MorePolymer metal complexes of poly ethylene glycol acetal and Ag (I), Cu (II), Ni (II), Mn (II), Co (III) and Hg (II) were prepared from the reaction of PEG with aldehyde derived fromErythro-ascorbic acid (pentulosono-ɣ-lactone-2, 3- enedianisoate). All these compounds were characterized by Thin Layer Chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR,13CNMR, and mass spectra. It has been established that, the polymer and its metal complexes showedgood activities against four pathogenic bacteria (Escherichia coli , Klebsiellapneumonae,Staphylococcusaureus, Staphylococcus Albus) and two fungal (Aspergillus Niger,Yeast). The polymer metal complexes showed higher activity than the free polymer.Theorder
... Show More