Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
In this paper, precision agriculture system is introduced based on Wireless Sensor Network (WSN). Soil moisture considered one of environment factors that effect on crop. The period of irrigation must be monitored. Neural network capable of learning the behavior of the agricultural soil in absence of mathematical model. This paper introduced modified type of neural network that is known as Spiking Neural Network (SNN). In this work, the precision agriculture system is modeled, contains two SNNs which have been identified off-line based on logged data, one of these SNNs represents the monitor that located at sink where the period of irrigation is calculated and the other represents the soil. In addition, to reduce p
... Show MoreTransportation network could be considered as a function of the developmental level of the Iraq, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure.
The main theme of this search is to show the characteristics of the regional transportation network in Iraq and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this search tries to draw an imagination for the connection between network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure. This search aiming also to determine the nat
This paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin
This work presents a completely new develop an analyzer, named NAG-5SX1-1D-SSP, that is simple, accurate, reproducible, and affordable for the determination of cefotaxime sodium (CFS) in both pure and pharmaceutical drugs. The analyzer was designed according to flow injection analysis, and conducted to turbidimetric measurements. Ammonium cerium nitrate was utilized as a precipitating agent. After optimizing the conditions, the analysis system exhibited a linear range of 0.008-27 mmol. L-1 (n=29), with a limit of detection of 439.3 ng/sample, a limit of quantification of 0.4805 mg/sample, and a correlation coefficient of 0.9988. The repeatability of the responses was assessed by performing six successive injections of CFS at concentra
... Show More

