Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Incremental sheet metal forming process is an advanced flexible manufacturing process to produce various 3D products without using dedicated tool as in conventional metal forming. There are a lot of process parameters that have effect on this process, studying the effect of some parameters on the strain distributions of the product over the length of deformation is the aim of this study.
In order to achieve this goal, three factors (tool forming shape, feed rate and incremental step size) are examined depending on three levels on the strain distributions over the wall of the product. Strain measurement was accomplished by using image processing technique using MATALB program. The significance of the control factors are explored u
... Show MoreThe research aims to: build and record a measure of cognitive participation among second-year female students at the College of Physical Education and Sports Sciences, University of Baghdad. The researchers used the descriptive approach in the survey style for the research sample. The sample was selected from female students and divided into: (10) female students for the survey sample, and (80) female students for the construction and codification sample. The data were statistically analyzed by the researchers using SPSS, the T-test for independent and correlated samples, Pearson's simple correlation coefficient, Cronbach's alpha, Chi-square, and Spearman-Brown. They were recruited for the samples. The study concluded that constr
... Show MoreIn recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show Moresensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show MoreThe research discusses the mechanism for analyzing the salary scale in the public sector through an analysis of grades, their stages, occupants and their financial entitlements, and the extent to which the information obtained for their investment in strategic planning, conducting correction and treatment can be used. The salaries of the employees in them, whose number is (1117) employees, to be a field of research, as the salary structure in it for the year 2019 was analyzed by relying on a number of statistical tools in the analysis process, including the arithmetic circles, upper limits, minimum limits and percentage, and with
... Show MorePurpose: studying and analyzing the nature of uncertainty as part of strategy formulation, through analyzing the uncertainty faced by managers in the modern business environment characterized by high complexity and dynamism, though developing of an idea about the uncertainty cases and how enable the mind to understand these cases.
Methodology: It was the use of inductive and analytical approach, in order to study the accumulation of knowledge towards development areas that could contribute to strengthening the strategy formulation.
Findings: Mentoring the future will not make the success for business organization but thought business organization ability to developing share mental
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show MoreThis paper experimentally investigates the heating process of a hot water supply using a neural network implementation of a self-tuning PID controller on a microcontroller system. The Particle Swarm Optimization (PSO) algorithm employed in system tuning proved very effective, as it is simple and fast optimization algorithm. The PSO method for the PID parameters is executed on the Matlab platform in order to put these parameters in the real-time digital PID controller, which was experimented with in a pilot study on a microcontroller platform. Instead of the traditional phase angle power control (PAPC) method, the Cycle by Cycle Power Control (CBCPC) method is implemented because it yields better power factor and eliminates harmonics
... Show MorePower switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show More