Preferred Language
Articles
/
Vha2ZIkBVTCNdQwCSYkW
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 30 2023
Journal Name
Iraqi Journal Of Science
Improve The Fully Convolutional Network Accuracy by Levelset and The Deep Prior Method
...Show More Authors

     Deep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Manganese Ions (Mn2+) from a Simulated Wastewater by Electrocoagulation/ Electroflotation Technologies with Stainless Steel Mesh Electrodes: Process Optimization Based on Taguchi Approach
...Show More Authors

This study depicts the removal of Manganese ions (Mn2+) from simulated wastewater by combined electrocoagulation/ electroflotation technologies. The effects of initial Mn concentration, current density (C.D.), electrolysis time, and different mesh numbers of stainless steel screen electrodes were investigated in a batch cell by adopting Taguchi experimental design to explore the optimum conditions for maximum removal efficiency of Mn. The results of multiple regression and signal to noise ratio (S/N) showed that the optimum conditions were Mn initial concentration of 100 ppm, C.D. of 4 mA/cm2, time of 120 min, and mesh no. of 30 (wire/inch). Also, the relative significance of each factor was attained by the analysis of variance (ANO

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
A Multi-Objective Evolutionary Algorithm based Feature Selection for Intrusion Detection
...Show More Authors

Nowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
A Genetic Based Optimization Model for Extractive Multi-Document Text Summarization
...Show More Authors

Extractive multi-document text summarization – a summarization with the aim of removing redundant information in a document collection while preserving its salient sentences – has recently enjoyed a large interest in proposing automatic models. This paper proposes an extractive multi-document text summarization model based on genetic algorithm (GA). First, the problem is modeled as a discrete optimization problem and a specific fitness function is designed to effectively cope with the proposed model. Then, a binary-encoded representation together with a heuristic mutation and a local repair operators are proposed to characterize the adopted GA. Experiments are applied to ten topics from Document Understanding Conference DUC2002 datas

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Applied Soft Computing
A new evolutionary multi-objective community mining algorithm for signed networks
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Tue Oct 16 2018
Journal Name
Springer Science And Business Media Llc
MOGSABAT: a metaheuristic hybrid algorithm for solving multi-objective optimisation problems
...Show More Authors

Scopus (58)
Crossref (40)
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2020
Journal Name
Indian Journal Of Science And Technology
Improvement of the Accuracy of the Perturbed Orbital Elements for LEO Satellite by Improving 4th Order Runge–Kutta’s Method
...Show More Authors

Background/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo

... Show More
Crossref (1)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Modeling of Bending Properties of Stainless Steel 304 Sheets Welded by Tungsten Inert Gas Welding Process
...Show More Authors

In this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Prediction of the Scale Removal Rate in Heat Exchanger Piping System Using the Analogies between Mass and Momentum Transfer
...Show More Authors

The possibility of predicting the mass transfer controlled CaCO3 scale removal   rate has been investigated.

Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.

Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .

View Publication Preview PDF