Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Electrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThe current research aims to recognize the exploratory and confirmatory factorial structure of the test-wiseness scale on a sample of Hama University students, using the descriptive method. Thus, the sample consists of (472) male and female students from the faculties of the University of Hama. Besides, Abu Hashem’s 50 item test-wiseness scale (2008) has been used. The validity and reliability of the items of the scale have also been verified, and six items have been deleted accordingly. The results of the exploratory factor analysis of the first degree have shown the presence of the following five acceptable factors: (exam preparation, test time management, question paper handling, answer sheet handling, and revision). Moreover,
... Show More- coli K12 and B. subtilis 168 were investigated for their cadmium and mercury tolerance abilities. They were developed by UV mutagenesis technique to increase their tolerances either to cadmium or mercury, and their names then were designated depend on the name and concentration of metals. E. coli K12 Cd3R exhibited bioremediation amount of 6.5 mg Cd/g dry biomass cell. At the same time, its wild-type (E. coli K12 Cd3) was able to remove 5.2 mg Cd/g dry biomass cell in treatment of 17 mg Cd /L within 72 hours of incubation at 37 °C (pH=7) in vitro assays. The results show that E.coli K12 Hg 20 was able to remove 0.050 µg Hg/g dry biomass cell
Lattakia city faces many problems related to the mismanagement of solid waste, as the disposal process is limited to the random Al-Bassa landfill without treatment. Therefore, solid waste management poses a special challenge to decision-makers by choosing the appropriate tool that supports strategic decisions in choosing municipal solid waste treatment methods and evaluating their management systems. As the human is primarily responsible for the formation of waste, this study aims to measure the degree of environmental awareness in the Lattakia Governorate from the point of view of the research sample members and to discuss the effect of the studied variables (place of residence, educational level, gender, age, and professional status) o
... Show MoreBackground/objectives: To study the motion equation under all perturbations effect for Low Earth Orbit (LEO) satellite. Predicting a satellite’s orbit is an important part of mission exploration. Methodology: Using 4th order Runge–Kutta’s method this equation was integrated numerically. In this study, the accurate perturbed value of orbital elements was calculated by using sub-steps number m during one revolution, also different step numbers nnn during 400 revolutions. The predication algorithm was applied and orbital elements changing were analyzed. The satellite in LEO influences by drag more than other perturbations regardless nnn through semi-major axis and eccentricity reducing. Findings and novelty/improvement: The results demo
... Show MoreThe acidity of spent lubricant was treated using sodium hydroxide solution. The effect of three variables on the treatment have been studied . These are mixing time rangingfrom 5-35 minutes, NaOH to lubricant weight ratio ranging from 0.25-1.25 and weight percentage of NaOH ranging from 2-6 % .
The experimental design of Box-Wilson method is adopted to find a useful relationship between the three controllable variables and the lowering in the acidity of the spent lubricant. Then the effective variables and interactions are identified using the statistical analysis(F-test) of three variable fractional design. The mathematical model is well represented by a second order polynomial.
By
... Show More