Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can pre
... Show MoreAA Abbass, HL Hussein, WA Shukur, J Kaabi, R Tornai, Webology, 2022 Individual’s eye recognition is an important issue in applications such as security systems, credit card control and guilty identification. Using video images cause to destroy the limitation of fixed images and to be able to receive users’ image under any condition as well as doing the eye recognition. There are some challenges in these systems; changes of individual gestures, changes of light, face coverage, low quality of video images and changes of personal characteristics in each frame. There is a need for two phases in order to do the eye recognition using images; revelation and eye recognition which will use in the security systems to identify the persons. The mai
... Show MoreThis study shows impoliteness as a form of face-threatening that can be intentionally caused by verbal threats in a particular setting. It investigates: what strategies and mitigators do Iraqi-Kurdish English as a foreign language (EFL) learners use in situations of threat responses? The present investigation paper aims to examine impoliteness strategies and mitigators by these learners when they respond to threatening situations in their context. Thus, it fills a gap in pragmatics literature by investigating the reactions to threats in an Iraqi-Kurdish EFL context. To this end, 50 participants have participated in this study. An open-ended questionnaire in the form of a Discourse Completion Task (DCT) is used to elicit responses fr
... Show MoreObjective: The study aimed to 1) measure the prevalence of depression and anxiety among Iraqi pharmacy and medical students at a number of universities in Baghdad using Hospital Anxiety and Depression Scale (HADS) and 2) investigate the association between various sociodemographic factors and students’ HADS scores. Methods: This study was based on a cross-sectional descriptive design in four universities in Baghdad, Iraq. Depression and anxiety were screened using an Arabic version of the HADS. An online survey was administered via Qualtrics to convenience samples of students at four colleges of pharmacy and a college of medicine between March and June 2018. Multiple linear regression was used to identify factors associated
... Show More<span lang="EN-US">Iraqi people have been without energy for nearly two decades, even though their geographic position provides a high intensity of radiation appropriate for the construction of solar plants capable of producing significant quantities of electricity. Also, the annual sunny hours in Iraq are between 3,600 to 4,300 hours which makes it perfect to use the photovoltaics arrays to generate electricity with very high efficiency compared to many countries, especially in Europe. This paper shows the amount of electric energy generated by the meter square of crystalline silicon in the photovoltaic (PV) array that already installed in 18 states in Iraq for each month of the year. The results of the meter-square of PV arr
... Show MoreSeveral correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably