Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively
The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in
... Show MorePoverty phenomenon is very substantial topic that determines the future of societies and governments and the way that they deals with education, health and economy. Sometimes poverty takes multidimensional trends through education and health. The research aims at studying multidimensional poverty in Iraq by using panelized regression methods, to analyze Big Data sets from demographical surveys collected by the Central Statistical Organization in Iraq. We choose classical penalized regression method represented by The Ridge Regression, Moreover; we choose another penalized method which is the Smooth Integration of Counting and Absolute Deviation (SICA) to analyze Big Data sets related to the different poverty forms in Iraq. Euclidian Distanc
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
Aqueous Two Phase System (ATPS) or liquid-liquid extraction is used in biotechnology to recover valuable compounds from raw sources. In Aqueous Two-Phase Systems, many factors influence the Partition coefficient, K, (which is the ratio of protein concentration in the top phase to that in the bottom phase) and the Recovery percentage (Rec%). In this research, two systems of ATPS were used: first, polyethylene glycol (PEG) 4000/Sodium citrate (SC), and the second, PEG8000/ Sodium phosphate (SPH), for the extraction of Bovine Serum Albumin (BSA). The behavior of Rec% and K of pure (BSA) in ATPS has been investigated throughout the study by the effects of five parameters: temperature, concentration of polyethylene glycol (P
... Show MoreThe process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel
... Show MoreReal Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig
This research deals with unusual approach for analyzing the Simple Linear Regression via Linear Programming by Two - phase method, which is known in Operations Research: “O.R.”. The estimation here is found by solving optimization problem when adding artificial variables: Ri. Another method to analyze the Simple Linear Regression is introduced in this research, where the conditional Median of (y) was taken under consideration by minimizing the Sum of Absolute Residuals instead of finding the conditional Mean of (y) which depends on minimizing the Sum of Squared Residuals, that is called: “Median Regression”. Also, an Iterative Reweighted Least Squared based on the Absolute Residuals as weights is performed here as another method to
... Show MoreIn this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreA fast laser texturing technique has been utilized to produce micro/nano surface textures in Silicon by means of UV femtosecond laser. We have prepared good absorber surface for photovoltaic cells. The textured Silicon surface absorbs the incident light greater than the non-textured surface. The results show a photovoltaic current increase about 21.3% for photovoltaic cell with two-dimensional pattern as compared to the same cell without texturing.