Preferred Language
Articles
/
Vha2ZIkBVTCNdQwCSYkW
Improvement of noisy images filtered by bilateral process using a multi-scale context aggregation network
...Show More Authors

Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for de-noising noisy CCTV images. Data-store is used tomanage our dataset, which is an object or collection of data that are huge to enter in memory, it allows to read, manage, and process data located in multiple files as a single entity. The CAN architecture provides integral deep learning layers such as input, convolution, back normalization, and Leaky ReLu layers to construct multi-scale. It is also possible to add custom layers like adaptor normalization (µ) and adaptive normalization (Lambda) to the network. The performance of the developed CAN approximation operator on the bilateral filtering noisy image is proven when improving both the noisy reference image and a CCTV foggy image. The three image evaluation metrics (SSIM, NIQE, and PSNR) evaluate the developed CAN approximation visually and quantitatively when comparing the created de-noised image over the reference image.Compared with the input noisy image, these evaluation metrics for the developed CAN de-noised image were (0.92673/0.76253, 6.18105/12.1865, and 26.786/20.3254) respectively

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Sep 01 2025
Journal Name
Journal Of Cancer Research Updates
Hematological Parameters in Liver Metastasis: A Comprehensive Clinical Evaluation for Early Detection in Iraqi Patients
...Show More Authors

Background: Liver metastasis significantly complicates cancer prognosis, yet easily accessible markers for its early detection and monitoring remain crucial. This study aimed to comprehensively evaluate key hematological parameters as potential indicators for liver metastasis in Iraqi patients. Methods: We conducted a cross-sectional study comparing hematological profiles between 90 patients (presumably with liver metastasis) and 30 healthy controls. White Blood Cell (WBC) count, Lymphocyte percentage, Neutrophil percentage, and Neutrophil-to-Lymphocyte Ratio (NLR) were analyzed. Given non-normal data distributions (confirmed by the Shapiro-Wilk test), group comparisons were performed using the non-parametric Mann-Whitney U test.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Telecommunication Systems
Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends
...Show More Authors

View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Biomaterials Science
Single-atom silver-borophene hybrid hydrogels for electrically stimulated wound healing: a multifunctional antibacterial platform
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
Serum Pseudocholinesterase as a Biomarker in the Differentiation between Gastric Cancer and Benign Gastric Diseases
...Show More Authors

Background: Worldwide gastric cancer is the fifth most common cancer with poor prognosis. In early stages, it is hard to distinguish gastric cancer from benign gastric diseases, resulting in delayed diagnosis. There is a need to develop a biomarker for differentiating between gastric cancer and benign gastric diseases. Serum cholinesterase is synthesized in liver and released into plasma, and it has an important role in oncogenesis.

Objectives: To determine the correlation between serum cholinesterase activity and gastric cancer, in comparison to benign gastric diseases.

Subjects and Methods: A case control study carried out at Medical City Direct

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems
...Show More Authors

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Wed May 08 2024
Journal Name
Journal Of Mathematics And Computer Science
How does media coverage affect a COVID-19 pandemic model with direct and indirect transmission?
...Show More Authors

In this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Wed Dec 31 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Factors associated with facial swelling severity following impacted lower third molar surgery: A prospective study
...Show More Authors

Background: The ultimate purpose of this prospective study is to estimate and measure swelling associated with surgical extrac¬tion of impacted mandibular third molars in different four post-operative times and to identify the risk factors associated with determination of their risk degree. Material and Methods: In this prospective cohort study 159 consecutive cases in which removal of impacted lower third molars in 107outpatients were evaluated. Five groups of variables have been studied which are regarded as a potential factor for swelling after mandibular third removal which will enable the surgeon to predict and counsel high risk patients in order to offer a preventive strategy. Results: Facial measurements were carried out on 1st, 2

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (3)
Scopus Crossref
Publication Date
Wed Aug 03 2022
Journal Name
Egyptian Journal Of Chemistry
A Novel Bio-electrochemical Cell with Rotating Cylinder Cathode for Cadmium Removal from Simulated Wastewater
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Radiology Case Reports
Intralobar pulmonary sequestration in elderly woman: a rare case report with emphasis on imaging findings
...Show More Authors

View Publication
Scopus (8)
Crossref (10)
Scopus Crossref