Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was designed using local cement, silica fume, and super plasticizer with a water/cement ratio of 0.2 to achieve a compressive strength of 96.3MPa at the age of 28 days, and it was tested at percentages of sustainable glass powder replacement of 0 and 20% by weight of cement. According to the study's findings, RPC's compressive strength rose up to 4.2% as a consequence of the use of sustainable glass powder replacement by 20%, flexural strength up to 15.3%, dry density up to 0.49%, and absorption reduction by 31.7% at the age of 28 days and in comparison with the reference mixture.
Abstract-Industrial and urban development has resulted in the spread of plastic waste and the increase in the emissions of carbon dioxide resulting from the cement manufacturing process. The current research aims to produce green (environmentally friendly) concrete by using plastic waste as coarse aggregates in different proportions (10% and 20%) and nano silica sand powder as an alternative to cement in different proportions (5% and 10% by weight). The results showed that compressive strength decreased by 12.10% and 19.23% for 10% and 20% plastic waste replacement and increased by 12.89% and 20.39% for 5% and 10% silica sand replacement respectively at 28 days. Flexural strength decreased by 12.95% and 19.64% for 10% and 20% plastic waste
... Show MoreThe possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model ba
... Show MoreIn this research work, a new type of concrete based on sulfur-melamine modification was introduced, and its various properties were studied. This new type of concrete was prepared based on the sulfur-melamine modification and various ingredients. The new sulfur-melamine modifier was fabricated, and its fabrication was confirmed by IR spectroscopy and TG analysis. The surface morphology resulted from this modifier was studied by SEM and EDS analysis. The components ratios in concrete, chemical and physical characteristics resulted from sulfur-melamine modifier, chemical and corrosion resistance of concrete, stability of concrete against water adsorption, stability of concrete against freezing, physical and mechanical properties and durabi
... Show MoreIn this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A compari
In this paper, the behavior of structural concrete linear bar members was studied using numerical model implemented in a computer program written in MATLAB. The numerical model is based on the modified version of the procedure developed by Oukaili. The model is based on real stress-strain diagrams of concrete and steel and their secant modulus of elasticity at different loading stages. The behavior presented by normal force-axial strain and bending moment-curvature relationships is studied by calculating the secant sectional stiffness of the member. Based on secant methods, this methodology can be easily implemented using an iterative procedure to solve non-linear equations. A comparison between numerical and experimental data, illustrated
... Show MoreReflective cracking is one of the primary forms of deterioration in pavements. It is widespread when Asphalt concrete (AC) overlays are built over a rigid pavement with discontinuities on its surface. Thus, this research work aims to reduce reflection cracks in asphalt concrete overlay on the rigid pavement. Asphalt Concrete (AC) slab specimens were prepared in three thicknesses (4, 5, and 6 cm). All these specimens were by testing machine designed and manufactured at the Engineering Consulting Office of the University of Baghdad to examine for the number of cycles and loads needed to propagate the reflection cracking in the asphalt concert mixture at three temperatures (20, 30, and 30°C). It was noticed that the higher thickness A
... Show MoreTHE EFFECT OF SPREACL of KNOWLEDGE ON ETHICS
This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show MoreThe design of components subjected to contact stress as local compressive stress is important in engineering application especially in ball and socket Joining. Two kinds of contact stress are introduced in the ball and socket joint, the first is from normal contact while the other is from sliding contact. Although joining two long links (drive shaft in steering cars) will cause the effect of flexural and tensional buckling stress in hollow columns through the ball and socket ends on the failure condition of the joining mechanism. In this paper the consideration of the combined effect of buckling Load and contact stress on the ball and socket joints have been taken, epically on the stress distribution in the contact area. Different
... Show More