Global warming and environmental damage have become major problems. The production of Portland cement releases large quantities of gas, which cause pollution to the atmosphere. This problem can be solved via the use of sustainable materials, such as glass powder. This study investigates the effect of partial replacement of cement with sustainable glass powder at various percentages (0, 15, 20, and 25%) by weight of cement on some mechanical properties (compressive strength, flexural strength, absorption, and dry density) of Reactive Powder Concrete (RPC) containing a percentage of Polypropylene fibers (PRPC) of 1% by weight. Furthermore, steam curing was performed for 5 hours at 90oC after hardening the sample directly. The RPC was designed using local cement, silica fume, and super plasticizer with a water/cement ratio of 0.2 to achieve a compressive strength of 96.3MPa at the age of 28 days, and it was tested at percentages of sustainable glass powder replacement of 0 and 20% by weight of cement. According to the study's findings, RPC's compressive strength rose up to 4.2% as a consequence of the use of sustainable glass powder replacement by 20%, flexural strength up to 15.3%, dry density up to 0.49%, and absorption reduction by 31.7% at the age of 28 days and in comparison with the reference mixture.
Biodiesel define as the mono-alkyl esters of vegetable oil and animal fats is an alternative diesel fuel that is steadily gaining attention because the combustion of fossil fuels such as coal, oil and natural gas has been identify as a major cause of the increase in the concentration of carbon dioxide in the earth’s atmosphere and causing global warming.
The present work concerns with estimating the physical properties experimentally such as kinematic viscosity, density, flash point and carbon residue of biodiesel that produced by the esterification reaction of methanol and oleic acid with homogeneous catalysts H2SO4 in a lab-scale packed reactive distillation column using the best operating conditions of methanol to oleic acid 8:1,
Back ground: During acrylic resin processing, the mold must be separated from the surface of the gypsum to prevent liquid resin from penetrating into the gypsum, and water from the gypsum seeping into the acrylic resin. For many years, tin foil was the most acceptable separating medium, and because it's difficult to apply, a tin-foil substitute is used. In this study, olive oil is used as an alternative to tin foil separating medium for first time, so the aim of the study was to evaluate its effect as a separating medium on some physical properties such as (surface roughness, water sorption and solubility) of acrylic resins denture base comparing it with those processed using tin-foil and tin foil substitute such as (cold mold seal) separat
... Show MoreIn recent years, the consideration of natural products as anti-inflammatory and antioxidative treatments has more interested worldwide. Moreover, natural products are easily obtained and are relatively safe the Royal jelly (RJ) is one of them. The current study was carried to evaluate the effects of pregabalin (PGB) on physiological activity of sperms, reproductive hormones assay and some biochemical analysis. Forty (40) male albino rats (10-weeks-old) were divided into four groups (10 rats each): G1 (treated with PGB drug, 150 mg/kg B.wt (Lyrica-Pfizer-Pharmaceutical Industries), G2 (treated with RJ 1g/kg), G3 (treated with PGB drug and RJ together), and G4 control treated with norma
The study aimed to know the effect of the use alcoholic ethanol extraction of Boswellia Carterii In prolonging the period of preservation cooled ground meat in 4C for 6 days, it has been mixing ground meat with 150,300,450 mg/ml of alcoholic extract Consecutive, Where (0 was the control sample), All samples were stored separately for 0 , 3 , 6 days in Refrigerator temperature 4 C, Conducted by some microbial tests, Results have shown that mixing the ground meat with Boswellia Carterii extraction Led to prolong the storage of meat for 6 days at 4 C .and the Best result came when adding alcoholic ethanol extract of Boswellia Carterii by 450mg/ml Which Equal 0.9 g ,that reducing microbial load more higher than 150&300 mg/ml. All of thes
... Show MoreThe transition structure is considered as the most important hydraulic structure controlling the w/s transtion, morever it decrease the scouring of outlet structure.
seven experiment samples for transition structure was used in this research at different angles ( 10° - 90° ).
It was shown that froud number has a clear effect on the depth of the scouring, morever the high discharge rates cause an increase of the ratio between the length of the scour and its depth.
In order to select the best flaring angle it was shown that the angle of 40° has the most discharge rate, least structure length and least angle scour depth, with the firmly of t
... Show MoreThis research studies the effect of grain size for the final stage in sintering Al2O3 .The experimental results for α- Al2O3 powder are modeled using ( L2-Regression ) technique in order to study the effect grain size distribution on densification rate using four kinds for the initial particle size which were ( 1.44 , 2.54 , 0.7-2.54 ,1.15-3.53 ) µm , and for sintering time (0-241) min. The mathematical simulation for grain size changing shows that the densification rates boots up as the grain size goes lower, this was due to the increase of contact area between the grains.
The settlement rate and pore water pressure dissipation rate are mainly controlled by the permeability of soil. Both laboratory and field tests show that the permeability is varied during the loading and consolidation process. It is known that consolidation process is accompanied by decrease in void ratio which leads to decrease in the coefficient of permeability. The importance of the decrease of the coefficient of permeability on the time rate of settlement and pore water pressure needs to be investigated.
This paper takes into account the change in coefficient of permeability during consolidation and studies its effect on consolidation characteristics of a clay layer. The finite element method is used in the analysis and the packag
Light naphtha treatment was achieved over 0.3wt%Pt loaded-alumina, HY-zeolite and Zr/W/HY-zeolite catalysts at temperature rang of 240-370°C, hydrogen to hydrocarbon mole ratio of 1-4 0.75-3 wt/wt/hr, liquid hourly space velocity (LHSV) and at atmospheric pressure. The hydroconversion of light naphtha over Pt loaded catalyst shows two main reactions; hydrocracking and hydroisomerization reactions. The catalytic conversion of a light naphtha is greatly influenced by reaction temperature, LHSV, and catalyst function. Naphtha transformation (hyroisomerization, cracking and aromatization) increases with decreasing LHSV and increasing temperature except hydroisomerization activity increases with increasing of temperature till 300°C then began
... Show More