The problem of non-Darcian-Bènard double diffusive magneto-Marangoni convection is considered in a horizontal infinite two layer system. The system consists of a two-component fluid layer placed above a porous layer, saturated with the same fluid with a constant heat sources/sink in both the layers, in the presence of a vertical magnetic field. The lower porous layer is bounded by rigid boundary, while the upper boundary of the fluid region is free with the presence of Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in a closed form for the eigenvalue and the Thermal Marangoni Number (TMN) for two cases of Thermal Boundary Combinations (TBC); th
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show MoreMachine scheduling problems (MSP) are considered as one of the most important classes of combinatorial optimization problems. In this paper, the problem of job scheduling on a single machine is studied to minimize the multiobjective and multiobjective objective function. This objective function is: total completion time, total lead time and maximum tardiness time, respectively, which are formulated as are formulated. In this study, a mathematical model is created to solve the research problem. This problem can be divided into several sub-problems and simple algorithms have been found to find the solutions to these sub-problems and compare them with efficient solutions. For this problem, some rules that provide efficient solutio
... Show MoreIn this paper, several types of space-time fractional partial differential equations has been solved by using most of special double linear integral transform â€double Sumudu â€. Also, we are going to argue the truth of these solutions by another analytically method “invariant subspace methodâ€. All results are illustrative numerically and graphically.
In this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those methods i
... Show MoreWithin this research, The problem of scheduling jobs on a single machine is the subject of study to minimize the multi-criteria and multi-objective functions. The first problem, minimizing the multi-criteria, which include Total Completion Time, Total Late Work, and Maximum Earliness Time (∑𝐶𝑗, ∑𝑉𝑗, 𝐸𝑚𝑎𝑥), and the second problem, minimizing the multi-objective functions ∑𝐶𝑗 + ∑𝑉𝑗 +𝐸𝑚𝑎𝑥 are the problems at hand in this paper. In this study, a mathematical model is created to address the research problems, and some rules provide efficient (optimal) solutions to these problems. It has also been proven that each optimal solution for ∑𝐶𝑗 + ∑𝑉𝑗 + 𝐸𝑚𝑎𝑥 is an effic
... Show Moreproblems with its unobvious effect on scientific creativity and information. Problem solving is one of main goals of researchers because it develops their right logical thinking methods. The present study aims at measuring logical thinking among female it structures in the university mea swing problem solving among them ,identifying statically differences significance in logical thinking among female instructors in the university according to (Specialization Variable), identifying differences significance in problem Solving among female instructions in the university according to ( Specialization Variable) and identifying the Correlation between logical thinking and problem solving among female instructors in the university. The sample c
... Show MoreIn this paper, a new technique is offered for solving three types of linear integral equations of the 2nd kind including Volterra-Fredholm integral equations (LVFIE) (as a general case), Volterra integral equations (LVIE) and Fredholm integral equations (LFIE) (as special cases). The new technique depends on approximating the solution to a polynomial of degree and therefore reducing the problem to a linear programming problem(LPP), which will be solved to find the approximate solution of LVFIE. Moreover, quadrature methods including trapezoidal rule (TR), Simpson 1/3 rule (SR), Boole rule (BR), and Romberg integration formula (RI) are used to approximate the integrals that exist in LVFIE. Also, a comparison between those
... Show MoreThis paper is concerned with combining two different transforms to present a new joint transform FHET and its inverse transform IFHET. Also, the most important property of FHET was concluded and proved, which is called the finite Hankel – Elzaki transforms of the Bessel differential operator property, this property was discussed for two different boundary conditions, Dirichlet and Robin. Where the importance of this property is shown by solving axisymmetric partial differential equations and transitioning to an algebraic equation directly. Also, the joint Finite Hankel-Elzaki transform method was applied in solving a mathematical-physical problem, which is the Hotdog Problem. A steady state which does not depend on time was discussed f
... Show MoreBreast cancer is the most common cancer among women over the world. To reducing reoccurrence and mortality rates, adjuvant hormonal therapy (AHT) is used for a long period. The major barrier to the effectiveness of the treatment is adherence. Adherence to medicines among patients is challenging. Patient beliefs in medications can be positively or negatively correlated to adherence. Objectives: To investigate the extent of adherence and factors affecting adherence, as well as to investigate the association between beliefs and adherence in women with breast cancer taking AHT. Method: A cross-sectional study included 124 Iraqi women with breast cancer recruited from Middle Euphrates
... Show More