Objective:This study involved synthesis of a new series of different five-membered heterocyclic derivatives, testing their antioxidant activity, and examining their potential in vitro antimicrobial agents. Methods: The synthesis of the derivatives involved a three-step process. Initially, succinyl chloride was reacted with methanol, followed by a reaction with 80% hydrazine hydrate through a nucleophilic addition-elimination mechanism, resulting in the formation of succinohydrazide (I). This compound was then employed as a precursor for the synthesis of Schiff bases (II), and (III) by reacting it with m-nitro benzaldehyde and p-nitro benzaldehyde. Following this, a ring closure reaction was applied using thioglycolic acid, glycolic acid, and glycine, resulting in the synthesis of different five-membered heterocyclic rings (IV–IX). Results and Discussion: The formation of the prepared derivatives was confirmed by FT-IR, 1H NMR, and 13C NMR spectroscopy. Comparative analysis with L-ascorbic acid as a standard revealed that all the prepared compounds exhibited excellent antioxidant activities. In terms of antimicrobial activity, the tested derivatives showed moderate activity against both positive and negative types of bacteria, when compared to the reference drug Ciprofloxacin. Additionally, the antifungal test showed moderate activity for all the tested compounds against a specific pathogenic fungus, with Clotrimazole being as the reference drug. The antimicrobial activity of the synthesized compounds was found to be dependent on the type of heterocyclic rings containing S, O, and N atoms. These atoms were observed to enhance antimicrobial activity by donating electrons and becoming active. Additionally, the presence of active functional groups such as C=O, NO2, and C=N contributed to this observed result. Conclusions: All of the synthesized compounds have demonstrated excellent antioxidant agents. Most of them have shown promising antimicrobial activity against certain bacteria strains, and effectiveness against a pathogenic fungus.
A group of amino derivatives [4-aminobenzenesulfonamide,4-amino-N¹ methylbenzenesulfonamide, or N¹-(4-aminophenylsulfonyl)acetamide] bound to carboxyl group of mefenamic acid a well known nonsteroidal anti-inflammatory drugs (NSAIDs) were designed and synthesized for evaluation as a potential anti-inflammatory agent. In vivo acute anti-inflammatory activity of the final compounds (9, 10 and 11) was evaluated in rat using egg-white induced edema model of inflammation in a dose equivalent to (7.5mg/Kg) of mefenamic acid. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the 4-amino-N-methylbenzenesulfonamide derivative (c
... Show MoreNew substituted anthraquinones with amino derivations fragments were synthesized through the substitution of bromine atom by different amines using the Ullmann coupling reaction. Obtained compounds based on anthraquinone used for experimental antimicrobial studies. The structure of the synthesized compounds was confirmed by LC-MS and 1H, 13C NMR spectroscopy. Studies on planktonic microorganisms have shown that the first synthesized anthraquinone derivatives have an inhibitory effect against bacteria and fungi. The triazene 1-(3-(benzoic acid(triaz-1-en-1-ol(-4-(1H-imidazol-1-yl(-9,10-dioxo-9,10-dihydroanthracene -2-sulfonic acid, have wide spectrum of activity, growth retardation zones against gram-positive micro
... Show MoreNovel heterocyclic polyimide 5(a,b) have been synthesized based on polyacrylic backbone. The synthetic route start with nucleophilic substitution of 2-amino, or 4-amino, pyridine 1(a,b) to the polyacryloyl chloride afforded poly substituted amide 2(a,b). Another nucleophilic substitution were carried with adipoyl chloride to form polyimide chloride 3(a,b). Treatment of 3(a,b) with hydrazine hydrate afforded acid hydrazide polyimide 4(a,b), which upon cyclocondensation with carbon disulfide gave the target heterocyclic polyimide. The synthesized compounds were identified by spectroscopic methods: FT-IR, 1H-NMR and 13C-NMR.
New Schiff bases derivatives [IV]a-e is prepared via condensation of Derythroascorbic acid with p-substituted aldehydes in dry benzene. To obtain these derivatives, the 5,6-O-isopropylidene-L-ascorbic acid[I] was chosen as starting material, compound prepared from the reaction of L-ascorbic acid as starting material. Compound[I] was prepared from the reaction of L-ascorbic acid with dry acetone in the presence of hydrogen chloride. The esterification of hydroxyl groups at C-2 and C-3 positions with excess ofethyl α –chloroacetate in the presence of sodium acetate produce acorresebonding ester [II] , which was condensed with hydrazine hydrate to give new hydrazide [III] . The new Schiff bases [IV]a-e were synthesized by reaction of acid h
... Show MoreThe chalcones 1( a,b) were prepared by the reaction of 2- acetyl benzofuran with two aromatic aldehydes in the presence of alkaline media. These chalcones are used as starting material to obtain the desired heterocyclic: pyrazolin, isoxazoline, pyrimidinthion, pyrimidinone, cyclohexanone and indazole derivatives. The structure of newly synthesized heterocyclic compounds were established on the basis of their melting points, elemental analysis(C.H.N), FTIR and 1HMNR (for some of them) spectral data . The synthesized compounds have been screened for their antibacterial activities, they exhibited good antibacterial activity against Escherichia coli (G-) and Staphylococus aureus (G+) .
The Chemistry of heterocyclic sulphur and nitrogen containing compounds have a great role in the field of scientific studies, The 2-amino 5-mercapto-1,3,4-thiadiazole ring for instance, has gained more importance in recent years because they are considered as potent biologically active nucleus. In this study disulfide derivative can be obtained by oxidation with hydrogen peroxide of thiol group of the heterocyclic 2-amino 5-mercapto-1,3,4-thiadiazole ring to obtain compound (3) with expected antibacterial activity. In order to use it as a diazo component to prepare some new bis azo compounds as possible antibacterial agents, the reaction of two primary amino groups on both sides of disulfide dimer with sodium nitr
... Show MorePolyvinal alcohol was Cynoethylated , complex compound with Iodin in presence of Cu++ ions were preparated and their ultra violet (U.V) and infra red( IR) spectra were investigated. The prepared derivative and complexes were evaluated as antibacterial and antifungal agents following the standard dilution method. MIC(minimum inhibitory concentration) for each polymer using ten types of gram + ve and gram _ ve bacteria were determinated in addition to three types of fungi. The results obtainded showed that MIC, s were around 0.0011 × 103 molar for different polymetric derivatives tried.
Heterocyclic systems, which are essential in medicinal chemistry due to their promising cytotoxic activity, are one of the most important families of organic molecules found in nature or produced in the laboratory. As a result of coupling N-(4-nitrophenyl)-3-oxo-butanamide (3) using thiourea, indole-3-carboxaldehyde, or piperonal, the pyrimidine derivatives (5a and 5b) were produced. Furthermore, pyrimidine 9 was synthesized by reacting thiophene-2-carboxaldehyde with ethyl cyanoacetate and urea with potassium carbonate as a catalyst. The chalcones 11a and 11b were synthesized by reacting equal molar quantities of 1-naphthaldehy
... Show MoreThe amino thiadiazole [I] on treatment with aromatic aldehydes yielded Schiff bases [IIa-c] , which cyclized to thiazolidinone [IIIa-c] derivatives by reaction with thioglycolic acid .Reaction of carbon disulfide and methyl iodide with [I] gavedithiomethyl[IV] which on treatment with o-phenylenediamine gave the condensed N-Imidazolythiadiazolylamine [V] , However , reaction of [I] with phenylisocyanate and phenylisothiocyanate afforded the carbamideand carbothiamide derivatives[VI.VII]a-c. The structure of these compounds was characterized from their melting point , FTIR spectroscopy and elementalanalysis