Semiconductor quantum dots (QDs) have attracted tremendous attentions for their unique characteristics for solid-state lighting and thin-film display applications. A simple chemical method was used to synthesis quantum dots (QDs) of zinc sulfide (ZnS) with low cost. The XRD) shows cubic phase of the prepared ZnS with an average particles size of (3-29) nm. In UV-Vis. spectra observed a large blue shift over 38 nm. The band gaps energy (Eg) was 3.8 eV and 3.37eV from the absorption and photoluminescence (PL) respectively which larger than the Eg for bulk. QDs-LED hybrid devices were fabricated using ITO/ PEDOT: PSS/ Poly-TPD/ ZnS-QDs/ with different electron transport layers and cathode of LiF/Al layers. The EL spectrum reveals a broad emission band covering the range 350 - 700 nm. Current-voltage (I–V) characteristics indicate that the output current is good according to the few voltages (8, 10, 11 and 12 V) used which gives acceptable results to light generation. Using TPBi and Alq3 as electron transport layer gives good enhancement to light generation in compares with that of QDs only. The emissions causing the luminescence were identified depending on the chromaticity coordinates (CIE 1931).
Successfully, theoretical equations were established to study the effect of solvent polarities on the electron current density, fill factor and efficiencies of Tris (8-hydroxy) quinoline aluminum (Alq3)/ ZnO solar cells. Three different solvents studied in this theoretical works, namely 1-propanol, ethanol and acetonitrile. The quantum model of transition energy in donor–acceptor system was used to derive a current formula. After that, it has been used to calculate the fill factor and the efficiency of the solar cell. The calculations indicated that the efficiency of the solar cell is influenced by the polarity of solvents. The best performance was for the solar cell based on acetonitrile as a solvent with electron current density of (5.0
... Show MoreTwo‐dimensional buoyancy‐induced flow and heat transfer inside a square enclosure partially occupied by copper metallic foam subjected to a symmetric side cooling and constant heat flux bottom heating was tested numerically. Finite Element Method was employed to solve the governing partial differential equations of the flow field and the Local Thermal Equilibrium model was used for the energy equation. The system boundaries were defined as lower heated wall by constant heat flux, cooled lateral walls, and insulated top wall. The three parameters elected to conduct the study are heater length (7 ≤
Calculations and predication a theoretical formulas for the electron drift velocity in a gas medium are achieved to deduced the electron distribution function for different gas concentrations. The calculations are achieved by using the numerical solution for Boltzmann transport equation in two term approximation, using the NOMAD program for the drift velocity in a gas medium. It's necessary to note that the solution is essentially depending upon the elastic and inelastic collision cross section. In order to fixe a good accuracy for the using cross section it's necessary to calculate the electron distribution function and therefore study their behavior. Results about the electron drift velocity show that a decreasing pro
... Show MoreThe effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea
... Show MoreThe plasma source can restrict the motion of charges that are localizing in the non equilibrium distribution of charge energy and reducing the electrons transport across magnetic field . The electrons & ions motion are controlled by ambipolar electric field and charge–atom collision . the source density for a given electron temperature and a given ion are considered to evaluate the diffusion coefficient . the ambipolar diffusion coefficient and the cross field diffusion coefficient for charge transfer are calculated through magnetized plasma in a uniform magnetic field , and an approximation ambipolar diffusion coefficient is evaluated. The result, showes how the diffusion process is gradually im
... Show MoreMalware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MoreVisible-light photodetectors constructed Fe2O3 were manufactured effectively concluded chemical precipitation technique, films deposited on glass substrate and Si wafer below diverse dopant (0,2,4,6)% of Cl, enhancement in intensity with X-ray diffraction analysis was showed through favored orientation along the (110) plane, the optical measurement presented direct allowed with reduced band gap energies thru variation doping ratio , current–voltage characteristics Fe2O3 /p-Si heterojunction revealed respectable correcting performance in dark, amplified by way of intensity of incident light, moreover good photodetector properties with enhancement in responsivity occurred at wavelength between 400 nm and 470 nm.
Zinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th
توزيعات كثافة البروتون (PDD)، خلافاتهم وتناثر الإلكترون مرنة عوامل الشكل، F (ف) من ارض الدولة لبعض نوى قذيفة، مثل ( 104 المشتريات، 106
... Show More