in the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction particles for the recently fluid. The impact of incoming parameters on the inflow features have been studied and painted.
Abstract
The current research aims to develop a guidance program suitable for high school students and apply it to them in order to ensure the reduction of addiction to the use of different means of communication. The researchers used the scale of addiction to the means of communication (SAS) to measure the level of addiction as well as to identify the impact of the proposed guidance program in reducing the degree of addiction to communication. It was applied to a sample of (20) female students divided equally into two groups: an experimental group of (10) female students and a control group of (10) female students from the secondary level in a school under the department of education in the education of the alma
... Show MoreBackground: The novel coronavirus disease (COVID-19) is caused by Severe acute respiratory syndrome coronavirus 2 (SARS-Cov2) which utilizes angiotensin converting enzyme2 (ACE2) to invade the host cells. This membrane-bound peptidase is widely distributed in the body; its activity antagonizes the renin-angiotensin-aldosterone system (RAAS). Once SARS-Cov2 enters the cell, it causes downregulation of ACE2, resulting in the unopposed activation of RAAS. The unregulated activity of the RAAS system can deteriorate the prognosis in COVID-19 patients. A soluble form of ACE2 (sACE2) was reported to have a role in the SARS-Cov2 invasion of the susceptible cells.
Aim of the study: This study aims to inve
... Show MoreBackground: The purpose of this study was to evaluate and compare centering ability and canal transportation of simulated S-shaped canals instrumented with four different types of rotary nickel-titanium systems. Materials and Methods: Forty simulated S-shaped canals in resin blocks were divided into four groups of ten each and were instrumented to an apical size 25 by different instrumentation technique using ProTaper Universal files (group A), ProTaperNext (group B), Reciproc (group C) and WaveOne (group D).Centering ability and canal transportation was measured at (11) measuring points from D0 to D10 bysuperimposion of the pre- and post-operative images obtained by using digital camera in standardized manner. An assessment of the canals
... Show MoreCO2 geo-storage efficiency is strongly influenced by the wettability of the CO2-brine-mineral system. With decreasing water-wetness, both, structural and residual trapping capacities are substantially reduced. This constitutes a serious limitation for CO2 storage particularly in oil-wet formations (which are CO2-wet). To overcome this, we treated CO2-wet calcite surfaces with nanofluids (nanoparticles dispersed in base fluid) and found that the systems turned strongly water-wet state, indicating a significant wettability alteration and thus a drastic improvement in storage potential. We thus conclude that CO2 storage capacity can be significantly enhanced by nanofluid priming.
This paper presents the thermophysical properties of zinc oxide nanofluid that have been measured for experimental investigation. The main contribution of this study is to define the heat transfer characteristics of nanofluids. The measuring of these properties was carried out within a range of temperatures from 25 °C to 45 °C, volume fraction from 1 to 2 %, and the average nanoparticle diameter size is 25 nm, and the base fluid is water. The thermophysical properties, including viscosity and thermal conductivity, were measured by using Brookfield rotational Viscometer and Thermal Properties Analyzer, respectively. The result indicates that the thermophysical properties of zinc oxide nanofluid increasing with nanoparticle volume f
... Show MoreThis study evaluates the performance of magnetic abrasive finishing (MAF) of aluminum alloy in terms of achieving materials removal (MR). A vertical milling machine is used to perform the finishing process using a developed MAF unit that consists of an inductor made out of a 150 mm long and 20 mm diameter iron core wound with 1500 turns and 0.5 mm copper wire. The commutator and magnetic pole are attached at the top and bottom of the inductor, respectively. The required current is supplied using a DC power supply. The South Pole workpiece is a 100×50×3 mm3 plate of AA 1100 aluminum alloy, whereas the magnetic pole represented the North Pole. Pole rotational speed, applied current, and abrasive finishing time was selected as
... Show MoreA study of non-diatom algal species composition in twelve sites from Greater Zab River path within
Erbil Province, was carried out from April 2021 to January 2022 with monthly sample collection in twelve studied sites. Among them site 4,5,6,7 and 9 are the first for algal study in this area. The 112 different species of algae belong to 33 genera, 25 families, 13 orders and 4 divisions have been identified. The predominant genera included Spirogyra and Cosmarium 17, 8 taxa respectively. 13 taxa were new recorded to Iraqi
Kurdistan algal flora and 9 of them were new recorded to Iraqi algal flora: Botryosphaerella sudetica, Muriella magna, Gloeotaenium loitlesbergianum, Apiocystis brauniana, Anabaena oscillarioides, C. distentum
A recent study compared experimentally the hydraulic and thermal activity of twisted tape inserts for two types, metal foam twisted tape (MFTT) and traditional twisted tape (TTT), in a double pipe heat exchanger. The investigation goal of the innovatively designed MFTT is to enhance the heat transfer process, which provides a higher thermal enhancement factor over those of TTT under the same conditions. Heat transfer activity in terms of Nusselt number (